A numerically explicit Burgess inequality and an application to quadratic non-residues

Enrique Treviño

Swarthmore College

AMS Sectional Meeting Akron, OH October 21, 2012

Squares

Consider the sequence

$$
2,5,8,11,14,17,20,23,26,29, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0,1$ or $2(\bmod 3)$.
- If $n=0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11,14,17,20,23,26,29, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories:

$$
n \equiv 0,1 \text { or } 2(\bmod 3)
$$

- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11,14,17,20,23,26,29, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories:

$$
n \equiv 0,1 \operatorname{or} 2(\bmod 3)
$$

- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11,14,17,20,23,26,29, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories:

$$
n \equiv 0,1 \operatorname{or} 2(\bmod 3)
$$

- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11,14,17,20,23,26,29, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0,1$ or $2(\bmod 3)$.
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Quadratic Residues and non-residues

Let n be a positive integer. For $q \in\{0,1,2, \ldots, n-1\}$, we call q a quadratic residue $\bmod n$ if there exists an integer x such that $x^{2} \equiv q(\bmod n)$. Otherwise we call q a quadratic non-residue.

- For $n=3$, the quadratic residues are $\{0,1\}$ and the non-residue is 2.
- For $n=5$, the quadratic residues are $\{0,1,4\}$ and the non-residues are $\{2,3\}$.
- For $n=7$, the quadratic residues are $\{0,1,2,4\}$ and the non-residues are $\{3,5,6\}$.
- For $n=p$, an odd prime, there are $\frac{p+1}{2}$ quadratic residues and $\frac{p-1}{2}$ non-residues.

Least non-residue

How big can the least non-residue be?

p	Least non-residue
3	2
7	3
23	5
71	7
311	11
479	13
1559	17
5711	19
10559	23
18191	29
31391	31
366791	37

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.

- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$
- If $k=\log \pi(x) / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{\pi(x)}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$
- If $k=\log \pi(x) / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{\pi(x)}{4}$.
- If $k=\log \pi(x) / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{\pi(x)}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$.
- If $k=\log \pi(x) / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{\pi(x)}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$.
- If $k=\log \pi(x) / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{\pi(x)}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$.
- If $k=\log \pi(x) / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Theorems on the least quadratic non-residue $\bmod p$

Let $g(p)$ be the least quadratic non-residue modp. Our conjecture is

$$
g(p)=O(\log p \log \log p)
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$.
- Unconditionally, Burgess showed $g(p)$
- $\frac{1}{4 \sqrt{\varepsilon}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is
$g(p)=\Omega(\log p \log \log \log p)$.

Theorems on the least quadratic non-residue $\bmod p$

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p)
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$.
- Unconditionally, Burgess showed $g(p)$
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$.
- In the lower bound clirection, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is
$g(p)=\Omega(\log p \log \log \log p)$

Theorems on the least quadratic non-residue $\bmod p$

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p)
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4 \sqrt{e}}+\epsilon}$.
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is
$g(p)=\Omega(\log p \log \log \log p)$.

Theorems on the least quadratic non-residue $\bmod p$

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p)
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4 \sqrt{e}}+\epsilon}$.
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is

$$
g(p)=\Omega(\log p \log \log \log p)
$$

History

The first breakthrough came in 1914 with some clever ideas from I.M. Vinogradov. Consider the function χ where $\chi(a)$ is 1 if a is a nonzero quadratic residue $\bmod p,-1$ if its a non-residue and 0 for $a=0 . \chi$ is then a primitive Dirichlet character $\bmod p$.

- Vinogradov noted that if $\sum \chi(a)<n$, then $g(p) \leq n$.
- He then proved $\sum \chi(a)<\sqrt{p} \log p$, which shows that $g(p) \leq \sqrt{p} \log p$.
- Then using that $\chi(a b)=\chi(a) \chi(b)$ he was able to improve this to show the asymptotic inequality $a(p)$

History

The first breakthrough came in 1914 with some clever ideas from I.M. Vinogradov. Consider the function χ where $\chi(a)$ is 1 if a is a nonzero quadratic residue $\bmod p,-1$ if its a non-residue and 0 for $a=0 . \chi$ is then a primitive Dirichlet character $\bmod p$.

- Vinogradov noted that if $\sum_{1 \leq a \leq n} \chi(a)<n$, then $g(p) \leq n$.
- He then proved $\sum \chi(a)<\sqrt{p} \log p$, which shows that $g(p) \leq \sqrt{p} \log p$.
- Then using that $\chi(\boldsymbol{a} b)=\chi(a) \chi(b)$ he was able to improve this to show the asymptotic inequality $g(p)$

History

The first breakthrough came in 1914 with some clever ideas from I.M. Vinogradov. Consider the function χ where $\chi(a)$ is 1 if a is a nonzero quadratic residue $\bmod p,-1$ if its a non-residue and 0 for $a=0 . \chi$ is then a primitive Dirichlet character $\bmod p$.

- Vinogradov noted that if $\sum \chi(a)<n$, then $g(p) \leq n$.
- He then proved $\sum_{1 \leq a \leq n} \chi(a)<\sqrt{p} \log p$, which shows that $g(p) \leq \sqrt{p} \log p$.
- Then using that $\chi(a b)=\chi(a) \chi(b)$ he was able to improve this to show the asymptotic inequality $g(p)$

History

The first breakthrough came in 1914 with some clever ideas from I.M. Vinogradov. Consider the function χ where $\chi(a)$ is 1 if a is a nonzero quadratic residue $\bmod p,-1$ if its a non-residue and 0 for $a=0 . \chi$ is then a primitive Dirichlet character $\bmod p$.

- Vinogradov noted that if $\sum \chi(a)<n$, then $g(p) \leq n$.
- He then proved $\sum_{1 \leq a \leq n} \chi(a)<\sqrt{p} \log p$, which shows that $g(p) \leq \sqrt{p} \log p$.
- Then using that $\chi(a b)=\chi(a) \chi(b)$ he was able to improve this to show the asymptotic inequality $g(p) \ll p^{\frac{1}{2 \sqrt{e}}+\varepsilon}$.

It took almost 50 years before the next breakthrough. It came from the following theorem of Burgess:

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where $q>1, r$ is a positive integer and $\epsilon>0$ is a real number. Then

$$
\left|S_{\chi}(M, N)\right|=\left|\sum_{M<n \leq M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4 r^{2}}+\epsilon}
$$

for $r=1,2,3$ and for any $r \geq 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with $N \geq 1$ and let $r \geq 2$, then

$$
\left|S_{\chi}(M, N)\right| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{1}{r}}
$$

Theorem (ET, 2012)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \geq 1$ and let r be a positive integer. Then for $p \geq 10^{7}$, we have

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with $N \geq 1$ and let $r \geq 2$, then

$$
\left|S_{\chi}(M, N)\right| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{1}{r}}
$$

Theorem (ET, 2012)

Let p be a prime. Let χ be a non-principal Dirichlet character $\bmod p$. Let M and N be non-negative integers with $N \geq 1$ and let r be a positive integer. Then for $p \geq 10^{7}$, we have

$$
\left|S_{\chi}(M, N)\right| \leq 2.71 N^{1-\frac{1}{r}} p^{\frac{r+1}{r^{2}}}(\log p)^{\frac{1}{r}} .
$$

A Corollary

Theorem (ET)

Let $g(p)$ be the least quadratic nonresidue $\bmod p$. Let p be a prime greater than 10^{4685}, then $g(p)<p^{1 / 6}$.

Other Applications of the Explicit Estimates

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant $>10^{140}$
- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x$ $(\bmod p)$.

Other Applications of the Explicit Estimates

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant $>10^{140}$.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x$ $(\bmod p)$.

Other Applications of the Explicit Estimates

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant $>10^{140}$.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x$ $(\bmod p)$.

Vinogradov's Trick

Lemma

Let $x \geq 259$ be a real number, and let $y=x^{1 / \sqrt{e}+\delta}$ for some $\delta>0$. Let χ be a non-principal Dirichlet character mod p for some prime p. If $\chi(n)=1$ for all $n \leq y$, then

$$
\sum_{n \leq x} \chi(n) \geq x\left(2 \log (\delta \sqrt{e}+1)-\frac{4}{\log ^{2} x}-\frac{1}{\log ^{2} y}-\frac{1}{x}-\frac{2}{\log x}\right)
$$

Proof.

$$
\sum_{n \leq x} \chi(n)=\sum_{n \leq x} 1-2 \sum_{\substack{y<q \leq x \\ \chi(q)=-1}} \sum_{n \leq \frac{x}{q}} 1,
$$

where the sum ranges over q prime. Therefore we have

$$
\sum_{n \leq x} \chi(n) \geq\lfloor x\rfloor-2 \sum_{y<q \leq x}\left\lfloor\frac{x}{q}\right\rfloor \geq x-1-2 x \sum_{y<q \leq x} \frac{1}{q}-2 \sum_{y<q \leq x} 1
$$

Proof of Main Corollary

Let $x \geq 259$ be a real number and let $y=x^{\frac{1}{\sqrt{\sqrt{e}}}+\delta}=p^{1 / 6}$ for some $\delta>0$. Assume that $\chi(n)=1$ for all $n \leq y$. Now we have
$2.71 x^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{1}{r}} \geq x\left(2 \log (\delta \sqrt{e}+1)-\frac{4}{\log ^{2} x}-\frac{1}{\log ^{2} y}-\frac{1}{x}-\frac{2}{\log x}\right)$
Now, letting $x=p^{\frac{1}{4}+\frac{1}{2 r}}$ we get

$$
\begin{equation*}
2.71 p^{\frac{\log \log p}{\log \rho}-\frac{1}{4 r^{2}}} \geq 2 \log (\delta \sqrt{e}+1)-\frac{4}{\log ^{2} x}-\frac{1}{\log ^{2} y}-\frac{1}{x}-\frac{2}{\log x} \tag{1}
\end{equation*}
$$

Picking $r=22$, one finds that $\delta=0.00458 \ldots$. For $p \geq 10^{4685}$, the right hand side of (1) is bigger than the left hand side.

Future Work

- Generalizing to other modulus not just prime modulus.
- Generalizing to Hecke characters.
- Improving McGown's result on norm euclidean cyclic cubic fields.

Thank you!

