A numerically explicit Burgess inequality and an application to quadratic non-residues

Enrique Treviño

Swarthmore College

AMS Sectional Meeting Akron, OH October 21, 2012

Consider the sequence

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

$$2, 5, 8, 11, 14, 17, 20, 23, 26, 29, \dots$$

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Quadratic Residues and non-residues

Let n be a positive integer. For $q \in \{0, 1, 2, ..., n-1\}$, we call q a quadratic residue mod n if there exists an integer x such that $x^2 \equiv q \pmod{n}$. Otherwise we call q a quadratic non-residue.

- For n = 3, the quadratic residues are $\{0, 1\}$ and the non-residue is 2.
- For n = 5, the quadratic residues are {0,1,4} and the non-residues are {2,3}.
- For n = 7, the quadratic residues are $\{0, 1, 2, 4\}$ and the non-residues are $\{3, 5, 6\}$.
- For n = p, an odd prime, there are $\frac{p+1}{2}$ quadratic residues and $\frac{p-1}{2}$ non-residues.

Least non-residue

How big can the least non-residue be?

р	Least non-residue
3	2
7	3
23	5
71	7
311	11
479	13
1559	17
5711	19
10559	23
18191	29
31391	31
366791	37

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Theorems on the least quadratic non-residue modp

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}} + \epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying g(p) ≫ log p log log log p, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

Theorems on the least quadratic non-residue modp

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

Theorems on the least quadratic non-residue modp

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\rho}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

Theorems on the least quadratic non-residue mod p

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\rho}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying g(p) ≫ log p log log log p, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

- Vinogradov noted that if $\sum_{1 \le a \le n} \chi(a) < n$, then $g(p) \le n$.
- He then proved $\sum_{1 \le a \le n} \chi(a) < \sqrt{p} \log p$, which shows that $g(p) \le \sqrt{p} \log p$.
- Then using that $\chi(ab) = \chi(a)\chi(b)$ he was able to improve this to show the asymptotic inequality $g(p) \ll p^{\frac{1}{2\sqrt{e}} + \varepsilon}$.

- Vinogradov noted that if $\sum_{1 \le a \le n} \chi(a) < n$, then $g(p) \le n$.
- He then proved $\sum_{1 \le a \le n} \chi(a) < \sqrt{p} \log p$, which shows that $g(p) \le \sqrt{p} \log p$.
- Then using that $\chi(ab) = \chi(a)\chi(b)$ he was able to improve this to show the asymptotic inequality $g(p) \ll p^{\frac{1}{2\sqrt{e}} + \varepsilon}$.

- Vinogradov noted that if $\sum_{1 \le a \le n} \chi(a) < n$, then $g(p) \le n$.
- He then proved $\sum_{1 \le a \le n} \chi(a) < \sqrt{p} \log p$, which shows that $g(p) \le \sqrt{p} \log p$.
- Then using that $\chi(ab) = \chi(a)\chi(b)$ he was able to improve this to show the asymptotic inequality $g(p) \ll p^{\frac{1}{2\sqrt{e}} + \varepsilon}$.

- Vinogradov noted that if $\sum_{1 \le a \le n} \chi(a) < n$, then $g(p) \le n$.
- He then proved $\sum_{1 \le a \le n} \chi(a) < \sqrt{p} \log p$, which shows that $g(p) \le \sqrt{p} \log p$.
- Then using that $\chi(ab) = \chi(a)\chi(b)$ he was able to improve this to show the asymptotic inequality $g(p) \ll p^{\frac{1}{2\sqrt{e}}+\varepsilon}$.

It took almost 50 years before the next breakthrough. It came from the following theorem of Burgess:

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where q > 1, r is a positive integer and $\epsilon > 0$ is a real number. Then

$$|\mathcal{S}_{\chi}(M,N)| = \left|\sum_{M < n \leq M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon}$$

for r = 1, 2, 3 and for any $r \ge 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let $r \geq$ 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET, 2012)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with N \geq 1 and let r be a positive integer. Then for p \geq 10⁷, we have

$$|S_{\gamma}(M,N)| \le 2.71 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}$$

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let $r \geq$ 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET, 2012)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with N \geq 1 and let r be a positive integer. Then for p \geq 10⁷, we have

$$|S_{\chi}(M,N)| \le 2.71 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

A Corollary

Theorem (ET)

Let g(p) be the least quadratic nonresidue mod p. Let p be a prime greater than 10^{4685} , then $g(p) < p^{1/6}$.

Other Applications of the Explicit Estimates

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p-1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.

Other Applications of the Explicit Estimates

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p-1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.

Other Applications of the Explicit Estimates

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p-1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.

Vinogradov's Trick

Lemma

Let $x \ge 259$ be a real number, and let $y = x^{1/\sqrt{e}+\delta}$ for some $\delta > 0$. Let χ be a non-principal Dirichlet character mod p for some prime p. If $\chi(n) = 1$ for all $n \le y$, then

$$\sum_{n \leq x} \chi(n) \geq x \left(2\log\left(\delta\sqrt{e} + 1\right) - \frac{4}{\log^2 x} - \frac{1}{\log^2 y} - \frac{1}{x} - \frac{2}{\log x} \right).$$

Proof.

$$\sum_{n\leq x}\chi(n)=\sum_{n\leq x}1-2\sum_{\substack{y< q\leq x\\\chi(q)=-1}}\sum_{n\leq \frac{x}{q}}1,$$

where the sum ranges over q prime. Therefore we have

$$\sum_{n \le x} \chi(n) \ge \lfloor x \rfloor - 2 \sum_{y < q \le x} \left\lfloor \frac{x}{q} \right\rfloor \ge x - 1 - 2x \sum_{y < q \le x} \frac{1}{q} - 2 \sum_{y < q \le x} 1.$$

Proof of Main Corollary

Let $x \ge 259$ be a real number and let $y = x^{\frac{1}{\sqrt{e}} + \delta} = p^{1/6}$ for some $\delta > 0$. Assume that $\chi(n) = 1$ for all $n \le y$. Now we have

$$2.71x^{1-\frac{1}{r}}\rho^{\frac{r+1}{4r^2}}(\log \rho)^{\frac{1}{r}} \geq x\left(2\log\left(\delta\sqrt{e}+1\right) - \frac{4}{\log^2 x} - \frac{1}{\log^2 y} - \frac{1}{x} - \frac{2}{\log x}\right).$$

Now, letting $x = p^{\frac{1}{4} + \frac{1}{2r}}$ we get

$$2.71p^{\frac{\log\log p}{r\log p} - \frac{1}{4r^2}} \ge 2\log(\delta\sqrt{e} + 1) - \frac{4}{\log^2 x} - \frac{1}{\log^2 y} - \frac{1}{x} - \frac{2}{\log x}. \tag{1}$$

Picking r=22, one finds that $\delta=0.00458\ldots$ For $p\geq 10^{4685}$, the right hand side of (1) is bigger than the left hand side.

Future Work

- Generalizing to other modulus not just prime modulus.
- Generalizing to Hecke characters.
- Improving McGown's result on norm euclidean cyclic cubic fields.

Thank you!