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Theorem 1. Let τ(n) be the number of divisors of n. Let ω(n) be the number of distinct

prime factors of n. Then

τ(n2) =
∑
d |n

2ω(d).

Proof. Let

Tn = {(x, y) ∈ N2 |xy = n2} and Ωd = {(x, y) ∈ N2 |xy = d and gcd (x, y) = 1}.

Then |Tn| = τ(n2) and |Ωd| = 2ω(d). Now, let

Ω =
⋃
d |n

Ωd.

Then |Ω| =
∑
d |n

2ω(d). Therefore what we want to prove is that |Tn| = |Ω|, which we will prove

with a bijection.

Let f : Tn → N2 be defined by

f(x, y) =

(
x+ n

gcd (x+ n, y + n)
,

y + n

gcd (x+ n, y + n)

)
.

We will show that the image of f is contained in Ω. Therefore f : Tn → Ω.

Let’s prove that f(Tn) ⊆ Ω. If (x, y) ∈ Tn, then xy = n2. Then (x+n)(y+n) = 2n2+n(x+

y) = n(2n+x+ y) = n(x+n+ y+n). Let d = gcd (x+ n, y + n) and x+n = dx1, y+n = y1.

Then

x1y1 =

(
x+ n

d

)(
y + n

d

)
=
(n
d

)(x+ n+ y + n

d

)
=
(n
d

)
(x1 + y1).

But gcd (x1y1, x1 + y1) = 1, therefore x1y1 |n and (x1 + y1) | d. In particular x1y1 |n implies

(x1, y1) ∈ Ω since gcd (x1, y1) = 1, which is what we wanted to prove.
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Now, let g : Ω→ N2 be defined by

g(x, y) =

(
nx

y
,
ny

x

)
.

It is easy to see that g(Ω) ⊆ Tn since
(

nx
y

) (
ny
x

)
= n2. Hence g : Ω→ Tn.

To complete the proof we need only show that f ◦ g and g ◦ f are the identity.

Let (x, y) ∈ Ω. Then g(x, y) =
(

nx
y
, ny

x

)
and f ◦ g(x, y) = f

(
nx
y
, ny

x

)
. To calculate f we

need to find d = gcd
(

nx
y

+ n, ny
x

+ n
)
. Now xy d = gcd ((nx+ ny)x, (nx+ ny)y) = nx + ny

since gcd (x, y) = 1 because (x, y) ∈ Ω. Therefore d = nx+ny
xy

. And we can now calculate

f ◦ g(x, y).

f ◦ g(x, y) = f

(
nx

y
,
ny

x

)
=

( nx
y

+ n

d
,
ny
x

+ n

d

)
=

(
nx+ny

y
nx+ny

xy

,
nx+ny

x
nx+ny

xy

)
= (x, y).

Now, let (x, y) ∈ Tn. Let d = gcd (x+ n, y + n). Then we have

g ◦ f(x, y) = g

(
x+ n

d
,
y + n

d

)
=

(
n

(
x+ n

y + n

)
, n

(
n+ y

n+ x

))
= (x, y).

The last equality comes from the fact that xy = n2, therefore n
(

x+n
y+n

)
= nx+n2

n+y
= nx+ny

n+y
=

x(n+y)
n+y

= x. Similarly for the second coordinate.

Given that f ◦ g and g ◦ f are each the identity, we have a bijection proving that |Tn| =

|Ω|.
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