Nice Bijective Proof

Enrique Treviño

September 8, 2010

Theorem 1. Let $\tau(n)$ be the number of divisors of n. Let $\omega(n)$ be the number of distinct prime factors of n. Then

$$
\tau\left(n^{2}\right)=\sum_{d \mid n} 2^{\omega(d)}
$$

Proof. Let

$$
T_{n}=\left\{(x, y) \in \mathbb{N}^{2} \mid x y=n^{2}\right\} \text { and } \Omega_{d}=\left\{(x, y) \in \mathbb{N}^{2} \mid x y=d \text { and } \operatorname{gcd}(x, y)=1\right\}
$$

Then $\left|T_{n}\right|=\tau\left(n^{2}\right)$ and $\left|\Omega_{d}\right|=2^{\omega(d)}$. Now, let

$$
\Omega=\bigcup_{d \mid n} \Omega_{d}
$$

Then $|\Omega|=\sum_{d \mid n} 2^{\omega(d)}$. Therefore what we want to prove is that $\left|T_{n}\right|=|\Omega|$, which we will prove with a bijection.

Let $f: T_{n} \rightarrow \mathbb{N}^{2}$ be defined by

$$
f(x, y)=\left(\frac{x+n}{\operatorname{gcd}(x+n, y+n)}, \frac{y+n}{\operatorname{gcd}(x+n, y+n)}\right)
$$

We will show that the image of f is contained in Ω. Therefore $f: T_{n} \rightarrow \Omega$.
Let's prove that $f\left(T_{n}\right) \subseteq \Omega$. If $(x, y) \in T_{n}$, then $x y=n^{2}$. Then $(x+n)(y+n)=2 n^{2}+n(x+$ $y)=n(2 n+x+y)=n(x+n+y+n)$. Let $d=\operatorname{gcd}(x+n, y+n)$ and $x+n=d x_{1}, y+n=y_{1}$. Then

$$
x_{1} y_{1}=\left(\frac{x+n}{d}\right)\left(\frac{y+n}{d}\right)=\left(\frac{n}{d}\right)\left(\frac{x+n+y+n}{d}\right)=\left(\frac{n}{d}\right)\left(x_{1}+y_{1}\right) .
$$

But $\operatorname{gcd}\left(x_{1} y_{1}, x_{1}+y_{1}\right)=1$, therefore $x_{1} y_{1} \mid n$ and $\left(x_{1}+y_{1}\right) \mid d$. In particular $x_{1} y_{1} \mid n$ implies $\left(x_{1}, y_{1}\right) \in \Omega$ since $\operatorname{gcd}\left(x_{1}, y_{1}\right)=1$, which is what we wanted to prove.

Now, let $g: \Omega \rightarrow \mathbb{N}^{2}$ be defined by

$$
g(x, y)=\left(\frac{n x}{y}, \frac{n y}{x}\right) .
$$

It is easy to see that $g(\Omega) \subseteq T_{n}$ since $\left(\frac{n x}{y}\right)\left(\frac{n y}{x}\right)=n^{2}$. Hence $g: \Omega \rightarrow T_{n}$.
To complete the proof we need only show that $f \circ g$ and $g \circ f$ are the identity.
Let $(x, y) \in \Omega$. Then $g(x, y)=\left(\frac{n x}{y}, \frac{n y}{x}\right)$ and $f \circ g(x, y)=f\left(\frac{n x}{y}, \frac{n y}{x}\right)$. To calculate f we need to find $d=\operatorname{gcd}\left(\frac{n x}{y}+n, \frac{n y}{x}+n\right)$. Now $x y d=\operatorname{gcd}((n x+n y) x,(n x+n y) y)=n x+n y$ since $\operatorname{gcd}(x, y)=1$ because $(x, y) \in \Omega$. Therefore $d=\frac{n x+n y}{x y}$. And we can now calculate $f \circ g(x, y)$.

$$
f \circ g(x, y)=f\left(\frac{n x}{y}, \frac{n y}{x}\right)=\left(\frac{\frac{n x}{y}+n}{d}, \frac{\frac{n y}{x}+n}{d}\right)=\left(\frac{\frac{n x+n y}{y}}{\frac{n x+n y}{x y}}, \frac{\frac{n x+n y}{x}}{\frac{n x+n y}{x y}}\right)=(x, y) .
$$

Now, let $(x, y) \in T_{n}$. Let $d=\operatorname{gcd}(x+n, y+n)$. Then we have

$$
g \circ f(x, y)=g\left(\frac{x+n}{d}, \frac{y+n}{d}\right)=\left(n\left(\frac{x+n}{y+n}\right), n\left(\frac{n+y}{n+x}\right)\right)=(x, y) .
$$

The last equality comes from the fact that $x y=n^{2}$, therefore $n\left(\frac{x+n}{y+n}\right)=\frac{n x+n^{2}}{n+y}=\frac{n x+n y}{n+y}=$ $\frac{x(n+y)}{n+y}=x$. Similarly for the second coordinate.

Given that $f \circ g$ and $g \circ f$ are each the identity, we have a bijection proving that $\left|T_{n}\right|=$ $|\Omega|$.

