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Theorem 1. Let 7(n) be the number of divisors of n. Let w(n) be the number of distinct

prime factors of n. Then

7(n?) = Z ow(d)

d|n

Proof. Let
T, = {(z,y) € N*|zy = n®} and Qq = {(z,y) € N*|zy = d and ged (z,y) = 1}.

Then |T;,| = 7(n?) and || = 2*@. Now, let

Q:UQd.

d|n

Then || = Z 24 Therefore what we want to prove is that |T,,| = |Q|, which we will prove
d|n
with a bijection.

Let f : T, — N? be defined by

f(w,y)=<

rT+n y+n
ged (z+n,y+n) ged(x+n,y+n))

We will show that the image of f is contained in 2. Therefore f : T, — €.
Let’s prove that f(T;,) C Q. If (z,y) € Ty, then xy = n?. Then (z+n)(y+n) = 2n*+n(z+
y)=n2n+zx+y)=n(r+n+y+n). Let d =ged (z +n,y +n) and xr+n = dx,y+n = y.

Then
= (55 () - () (2520) -

But ged (x1y1, 21 + 1) = 1, therefore z1y; |n and (21 + y1) |d. In particular x1y; | n implies

(x1,11) € Q since ged (21, y1) = 1, which is what we wanted to prove.
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Now, let g : Q — N? be defined by

9(z,y) = <E%> :

Yy T

It is easy to see that ¢g(€2) C T,, since (%) ("2) = n? Hence g: Q — T,,.

To complete the proof we need only show that f o g and go f are the identity.

Let (z,y) € Q. Then g(x,y) = (%,%) and fog(x,y) = f (%, %) . To calculate f we
need to find d = ged (% +n, 2+ n) Now zyd = ged ((nx + ny)z, (nx + ny)y) = nx + ny
since ged (z,y) = 1 because (z,y) € Q. Therefore d = m’x—zny And we can now calculate

fog(z,y).

nx n nT+ny  nztny
nr ny +n 2 4n : e
reat =1 () = () = (i ) = )

Yy zy

Now, let (z,y) € T,,. Let d = ged (x + n,y +n). Then we have

<o (£52.558) < (o (522) 0 (332)) -

x
: _ 2 z4n\ _ nat+n? _ nztny
The last equality comes from the fact that zy = n*, therefore n m +n) =t = =

I(:—J:Ly) = z. Similarly for the second coordinate.

Given that f o g and g o f are each the identity, we have a bijection proving that |7T},| =
192 O



