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Dirichlet Characters

Definition (Character)
A character χ is a homomorphism from a finite abelian group G
to C∗.

Definition (Dirichlet Character)
Dirichlet characters of modulus n are characters over the
multiplicative group of Z/nZ and extend it to Z by having
chi(m) = m (mod n) if (m,n) = 1 and χ(m) = 0 if and only if
(m,n) > 1.

χ(m) = 1 for all (m,n) = 1. Called the principal character.

For modulus p prime, let χ(m) =
(

m
p

)
, the Legendre

symbol.

Enrique Treviño Explicit Bounds for the Burgess Inequality for Character Sums



Short Character Sums
Explicit Constants

Proof
Quadratic Case

Short Character Sums, Why bother?

I will be interested in short character sums. If we let χ be a
non-principal character of modulus p then a short character
sum looks like this:

Sχ(N) =
∑

M<n≤N+M

χ(n)

Applications:
Improving upperbound for least quadratic non-residue
(mod p)

Calculating L(1, χ)
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Polya-Vinogradov

Theorem (Polya-Vinogradov)
For χ a non-principal Dirichlet character to the modulus q

Sχ(N)�
√

q log q

Constant made explicit and improved by people over time.

Theorem (Pomerance)
If χ is a non-principal Dirichlet character to the modulus q,
where q ≥ 500 then

Sχ(N) ≤ 1
3 log 3

√
q log q + 2

√
q
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Burgess

In the 60s, Burgess came out with the following:

Theorem (D. Burgess)

Let χ be a primitive character of conductor q > 1. Then

Sχ(N) =
∑

M<n≤M+N

χ(n)� N1− 1
r q

r+1
4r2 +ε

for r = 2,3 and for any r ≥ 1 if q is cubefree, the implied
constant depending only on ε and r .
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Explicit Constants

Theorem (Iwaniec-Kowalski-Friedlander)
Let χ be a Dirichlet character mod p. Then for r ≥ 2

|Sχ(N)| ≤ 30 · N1− 1
r p

r+1
4r2 (log p)

1
r .
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Improvement

Theorem (ET)
Let χ be a Dirichlet character mod p. Then for r ≥ 2 and
p ≥ 107.

|Sχ(N)| ≤ 3 · N1− 1
r p

r+1
4r2 (log p)

1
r .

Note, the constant gets better for larger r , for example for
r = 3,4,5,6 the constant is 2.376,2.085,1.909,1.792
respectively.
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Proof

Idea 1: Shift, take average and use induction

Sχ(N) =
∑

M<n≤M+N

χ(n+ab)+
∑

M<n≤M+ab

χ(n)−
∑

M+N<n≤M+N+ab

χ(n)

1 ≤ a ≤ A, 1 ≤ b ≤ B.
Take average as a and b move around their options.
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Proof Cont.

V =
∑
a,b

∑
M<n≤M+N

χ(n + ab)

Since χ(n + ab) = χ(a)χ(ān + b), we have that

V =
∑

x (mod p)

v(x)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x + b)

∣∣∣∣∣∣
where v(x) is the number of ways of writing x as ān where a
and n are in the proper ranges.
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Proof Cont.

Idea 2: Holder’s Inequality

Let V1 =
∑

x (mod p)

v(x) = AN

Let V2 =
∑

x (mod p)

v2(x)

Let W =
∑

x (mod p)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x + b)

∣∣∣∣∣∣
2r

.

By Holder’s Inequality we get

V ≤ V
1− 1

r
1 V

1
2r

2 W
1
2r
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Proof Cont.

Lemma

For A ≥ 40 and A ≤ N
15 ,

V2 =
∑

x (mod p)

v2(x) ≤ 2AN
(

AN
p

+ log(2A)

)

V2 is the number of quadruples (a1,a2,n1,n2) with
1 ≤ a1,a2 ≤ A and M < n1,n2 ≤ M + N such that a1n2 ≡ a2n1
(mod p).

V2 ≤ AN + 2
∑

a1<a2

( (a1 + a2)N
gcd (a1,a2)p

+ 1
)(gcd (a1,a2)N

max{a1,a2}
+ 1
)
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Heart of the proof

Lemma

W =
∑

x (mod p)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x + b)

∣∣∣∣∣∣
2r

≤ r2r Br p + (2r − 1)B2r√p

W =
∑

x (mod p)

∣∣∣∣∣∣
∑

1≤b≤B

χ(x + b)

∣∣∣∣∣∣
2r

=
∑

b1,...,b2r

∑
x (mod p)

χ

(
(x + b1) . . . (x + br )

(x + br+1) . . . (x + b2r )

)
.

Letting f (x) be the function inside χ, we can use Weil’s theorem (Riemann
Hypothesis on Curves) to bound it by

√
p if f (x) is not a k -th power where k

is the order of χ.
By using Weil’s theorem when f (x) is a k -th power and using the trivial bound
of p whenever f (x) is not a k -th power we can estime W to get the lemma.
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Ending the Proof

Optimize choice of A and B.
Use inductive hypothesis to bound the sums of length AB.
Put it all together and compute.
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Quadratic Case (Booker)

Theorem (Booker)

Let p > 1020 be a prime number ≡ 1 (mod 4), r ∈ {2, . . . ,15} and
0 < M,N ≤ 2

√
p. Let χ be a quadratic character (mod p). Then∣∣∣∣∣∣
∑

M≤n<M+N

χ(n)

∣∣∣∣∣∣ ≤ α(r)p
r+1
4r2 (log p + β(r))

1
2r N1− 1

r

where α(r), β(r) are given by
r α(r) β(r) r α(r) β(r)
2 1.8221 8.9077 9 1.4548 0.0085
3 1.8000 5.3948 10 1.4231 -0.4106
4 1.7263 3.6658 11 1.3958 -0.7848
5 1.6526 2.5405 12 1.3721 -1.1232
6 1.5892 1.7059 13 1.3512 -1.4323
7 1.5363 1.0405 14 1.3328 -1.7169
8 1.4921 0.4856 15 1.3164 -1.9808
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Improving the range

For r ≥ 3 we can do the following:

cr N1− 1
r p

r+1
4r2 log (p)

1
2r < c2N

1
2 p

3
16 log (p)

1
2

Then

N ≤
(

c2

cr

) 2r
r−2

p
3r+2

8r (log (p))
r−1
r−2

Therefore we have N <
√

p. Hence the range Booker gets can
be extended for r ≥ 3.
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Improving the Log Factor in the General Case

The same trick gets us to improve my theorem to:

Theorem (ET)
Let χ be a Dirichlet character mod p. Then for r ≥ 3

|Sχ(N)| ≤ 3.1 · N1− 1
r p

r+1
4r2 (log p + 6)

1
2r .
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