Explicit Bounds for the Burgess Inequality for Character Sums

Enrique Treviño

INTEGERS, October 16, 2009

Dirichlet Characters

Definition (Character)

A character χ is a homomorphism from a finite abelian group G to \mathbb{C}^{*}.

Definition (Dirichlet Character)

Dirichlet characters of modulus n are characters over the multiplicative group of $\mathbb{Z} / n \mathbb{Z}$ and extend it to \mathbb{Z} by having chi $(m)=m(\bmod n)$ if $(m, n)=1$ and $\chi(m)=0$ if and only if $(m, n)>1$.

- $\chi(m)=1$ for all $(m, n)=1$. Called the principal character.
- For modulus p prime, let $\chi(m)=\left(\frac{m}{p}\right)$, the Legendre symbol.

Short Character Sums, Why bother?

I will be interested in short character sums. If we let χ be a non-principal character of modulus p then a short character sum looks like this:

$$
S_{\chi}(N)=\sum_{M<n \leq N+M} \chi(n)
$$

Applications:

- Improving upperbound for least quadratic non-residue $(\bmod p)$
- Calculating $L(1, \chi)$

Polya-Vinogradov

Theorem (Polya-Vinogradov)
For χ a non-principal Dirichlet character to the modulus q

$$
S_{\chi}(N) \ll \sqrt{q} \log q
$$

Constant made explicit and improved by people over time.

Theorem (Pomerance)

If χ is a non-principal Dirichlet character to the modulus q, where $q \geq 500$ then

$$
S_{\chi}(N) \leq \frac{1}{3 \log 3} \sqrt{q} \log q+2 \sqrt{q}
$$

Burgess

In the 60s, Burgess came out with the following:

Theorem (D. Burgess)

Let χ be a primitive character of conductor $q>1$. Then

$$
S_{\chi}(N)=\sum_{M<n \leq M+N} \chi(n) \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4 r^{2}}+\epsilon}
$$

for $r=2,3$ and for any $r \geq 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Explicit Constants

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a Dirichlet character mod p. Then for $r \geq 2$

$$
\left|S_{\chi}(N)\right| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{1}{r}} .
$$

Improvement

Theorem (ET)

Let χ be a Dirichlet character $\bmod p$. Then for $r \geq 2$ and $p \geq 10^{7}$.

$$
\left|S_{\chi}(N)\right| \leq 3 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{1}{r}}
$$

Note, the constant gets better for larger r, for example for $r=3,4,5,6$ the constant is $2.376,2.085,1.909,1.792$ respectively.

Proof

Idea 1: Shift, take average and use induction

$$
\begin{aligned}
& S_{\chi}(N)=\sum_{M<n \leq M+N} \chi(n+a b)+\sum_{M<n \leq M+a b} \chi(n)-\sum_{M+N<n \leq M+N+a b} \chi(n) \\
& 1 \leq a \leq A, 1 \leq b \leq B .
\end{aligned}
$$

Take average as a and b move around their options.

Proof Cont.

$$
V=\sum_{a, b} \sum_{M<n \leq M+N} \chi(n+a b)
$$

Since $\chi(n+a b)=\chi(a) \chi(\bar{a} n+b)$, we have that

$$
V=\sum_{x(\bmod p)} v(x)\left|\sum_{1 \leq b \leq B} \chi(x+b)\right|
$$

where $v(x)$ is the number of ways of writing x as $\bar{a} n$ where a and n are in the proper ranges.

Proof Cont.

Idea 2: Holder's Inequality

$$
\text { - Let } V_{1}=\sum_{x(\bmod p)} v(x)=A N
$$

- Let $V_{2}=\sum_{x(\bmod p)} v^{2}(x)$
- Let $W=\sum_{x(\bmod p)}\left|\sum_{1 \leq b \leq B} \chi(x+b)\right|^{2 r}$.

By Holder's Inequality we get

$$
V \leq V_{1}^{1-\frac{1}{r}} V_{2}^{\frac{1}{2 r}} W^{\frac{1}{2 r}}
$$

Proof Cont.

Lemma

For $A \geq 40$ and $A \leq \frac{N}{15}$,

$$
V_{2}=\sum_{x(\bmod p)} v^{2}(x) \leq 2 A N\left(\frac{A N}{p}+\log (2 A)\right)
$$

V_{2} is the number of quadruples $\left(a_{1}, a_{2}, n_{1}, n_{2}\right)$ with $1 \leq a_{1}, a_{2} \leq A$ and $M<n_{1}, n_{2} \leq M+N$ such that $a_{1} n_{2} \equiv a_{2} n_{1}$ $(\bmod p)$.

$$
V_{2} \leq A N+2 \sum_{a_{1}<a_{2}}\left(\frac{\left(a_{1}+a_{2}\right) N}{\operatorname{gcd}\left(a_{1}, a_{2}\right) p}+1\right)\left(\frac{\operatorname{gcd}\left(a_{1}, a_{2}\right) N}{\max \left\{a_{1}, a_{2}\right\}}+1\right)
$$

Heart of the proof

Lemma

$$
W=\sum_{x(\bmod p)}\left|\sum_{1 \leq b \leq B} \chi(x+b)\right|^{2 r} \leq r^{2 r} B^{r} p+(2 r-1) B^{2 r} \sqrt{p}
$$

$$
W=\sum_{x(\bmod p)}\left|\sum_{1 \leq b \leq B} \chi(x+b)\right|^{2 r}=\sum_{b_{1}, \ldots, b_{2 r} x} \sum_{(\bmod p)} \chi\left(\frac{\left(x+b_{1}\right) \ldots\left(x+b_{r}\right)}{\left(x+b_{r+1}\right) \ldots\left(x+b_{2 r}\right)}\right) .
$$

Letting $f(x)$ be the function inside χ, we can use Weil's theorem (Riemann Hypothesis on Curves) to bound it by \sqrt{p} if $f(x)$ is not a k-th power where k is the order of χ.
By using Weil's theorem when $f(x)$ is a k-th power and using the trivial bound of p whenever $f(x)$ is not a k-th power we can estime W to get the lemma.

Ending the Proof

- Optimize choice of A and B.
- Use inductive hypothesis to bound the sums of length $A B$.
- Put it all together and compute.

Quadratic Case (Booker)

Theorem (Booker)

Let $p>10^{20}$ be a prime number $\equiv 1(\bmod 4), r \in\{2, \ldots, 15\}$ and $0<M, N \leq 2 \sqrt{p}$. Let χ be a quadratic character $(\bmod p)$. Then

$$
\left|\sum_{M \leq n<M+N} \chi(n)\right| \leq \alpha(r) p^{\frac{r+1}{4^{2}}}(\log p+\beta(r))^{\frac{1}{2 r}} N^{1-\frac{1}{r}}
$$

where $\alpha(r), \beta(r)$ are given by

r	$\alpha(r)$	$\beta(r)$	r	$\alpha(r)$	$\beta(r)$
2	1.8221	8.9077	9	1.4548	0.0085
3	1.8000	5.3948	10	1.4231	-0.4106
4	1.7263	3.6658	11	1.3958	-0.7848
5	1.6526	2.5405	12	1.3721	-1.1232
6	1.5892	1.7059	13	1.3512	-1.4323
7	1.5363	1.0405	14	1.3328	-1.7169
8	1.4921	0.4856	15	1.3164	-1.9808

Improving the range

For $r \geq 3$ we can do the following:

$$
c_{r} N^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}} \log (p)^{\frac{1}{2 r}}<c_{2} N^{\frac{1}{2}} p^{\frac{3}{16}} \log (p)^{\frac{1}{2}}
$$

Then

$$
N \leq\left(\frac{c_{2}}{c_{r}}\right)^{\frac{2 r}{r-2}} p^{\frac{3 r+2}{8 r}}(\log (p))^{\frac{r-1}{r-2}}
$$

Therefore we have $N<\sqrt{p}$. Hence the range Booker gets can be extended for $r \geq 3$.

Improving the Log Factor in the General Case

The same trick gets us to improve my theorem to:

Theorem (ET)

Let χ be a Dirichlet character mod p. Then for $r \geq 3$

$$
\left|S_{\chi}(N)\right| \leq 3.1 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p+6)^{\frac{1}{2 r}} .
$$

Acknowledgements

- My advisor Carl Pomerance for suggesting the problem and guidance.
- Burgess, Iwaniec, Friedlander, Kowalski, Booker, Montgomery, Vaughan, and Granville for their work on short character sums.

