The least quadratic non-residue and related problems

Enrique Treviño

Lake Forest College

California State University, Chico Colloquium April 17, 2015

Enrique Treviño The least quadratic non-residue and related problems

Consider the sequence

 $2,5,8,11,\ldots$

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

 $2,5,8,11,\ldots$

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

$$2, 5, 8, 11, \ldots$$

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

$$2, 5, 8, 11, \ldots$$

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

$$2, 5, 8, 11, \ldots$$

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Quadratic residues and non-residues

Let *n* be a positive integer. For $q \in \{0, 1, 2, ..., n-1\}$, we call *q* a quadratic residue mod *n* if there exists an integer *x* such that $x^2 \equiv q \pmod{n}$. Otherwise we call *q* a quadratic non-residue.

- For *n* = 3, the quadratic residues are {0, 1} and the quadratic non-residue is 2.
- For *n* = 5, the quadratic residues are {0, 1, 4} and the quadratic non-residues are {2,3}.
- For *n* = 7, the quadratic residues are {0,1,2,4} and the quadratic non-residues are {3,5,6}.
- For n = p, an odd prime, there are ^{p+1}/₂ quadratic residues and ^{p-1}/₂ quadratic non-residues.

イロン 不良 とくほう 不良 とうほ

Least quadratic non-residue

How big can the least quadratic non-residue be? Let g(p) be the least quadratic non-residue modulo p.

p	Least quadratic non-residue
3	2
5	2
7	3
11	2
13	2
17	3
19	2
23	5
29	2
31	3

★ E > < E >

The least quadratic non-residue mod p

The primes that Euclid forgot Dirichlet Characters

р	Least quadratic non-residue		
7	3		
23	5		
71	7		
311	11		
479	13		
1559	17		
5711	19		
10559	23		
18191	29		
31391	31		
422231	37		
701399	41		
366791	43		
3818929	47		

Enrique Treviño The least quadratic non-residue and related problems

▲口 → ▲圖 → ▲ 国 → ▲ 国 →

æ

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

• $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}.$$

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}.$$

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

イロト イポト イヨト イヨト

ъ

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}.$
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}.$
- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

イロト イポト イヨト イヨト

3

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

•
$$\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$$

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}.$$

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

ヘロン 人間 とくほ とくほ とう

ъ

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

•
$$\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$$

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$
.

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

•
$$\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$$

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$
.

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

イロト 不得 とくほ とくほ とうほ

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed g(p) ≤ 2 log² p. Soundararajan, Lamzouri and Li improved this to g(p) ≤ log² p.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}}+\epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p).$

ヘロト ヘワト ヘビト ヘビト

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed g(p) ≤ 2 log² p. Soundararajan, Lamzouri and Li improved this to g(p) ≤ log² p.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}} + \epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p).$

ヘロン ヘアン ヘビン ヘビン

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed g(p) ≤ 2 log² p. Soundararajan, Lamzouri and Li improved this to g(p) ≤ log² p.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633.$
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p).$

イロン 不良 とくほう 不良 とうほ

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed g(p) ≤ 2 log² p. Soundararajan, Lamzouri and Li improved this to g(p) ≤ log² p.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

ヘロン 人間 とくほ とくほ とう

-

Explicit estimates on the least quadratic non-residue mod *p*

Norton showed

$$g(p) \leq \left\{egin{array}{cc} 3.9 p^{1/4} \log p & ext{if } p \equiv 1 \pmod{4}, \ 4.7 p^{1/4} \log p & ext{if } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Theorem (ET 2015)

Let p > 3 be a prime. Let g(p) be the least quadratic non-residue mod p. Then

$$g(p) \le \begin{cases} 0.9p^{1/4}\log p & \text{if } p \equiv 1 \pmod{4}, \\ 1.1p^{1/4}\log p & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Explicit estimates on the least quadratic non-residue mod *p*

Norton showed

$$g(p) \leq \left\{egin{array}{cc} 3.9 p^{1/4} \log p & ext{if } p \equiv 1 \pmod{4}, \ 4.7 p^{1/4} \log p & ext{if } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Theorem (ET 2015)

Let p > 3 be a prime. Let g(p) be the least quadratic non-residue mod p. Then

$$g(p) \leq \left\{ egin{array}{cc} 0.9 p^{1/4} \log p & \mbox{if } p \equiv 1 \pmod{4}, \ 1.1 p^{1/4} \log p & \mbox{if } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Theorem (Burgess 1962)

Let g(p) be the least quadratic non-residue mod p. Let $\varepsilon > 0$. There exists p_0 such that for all primes $p \ge p_0$ we have $g(p) < p^{\frac{1}{4\sqrt{e}} + \varepsilon}$.

Theorem (ET)

Let g(p) be the least quadratic non-residue mod p. Let p be a prime greater than 10^{4732} , then $g(p) < p^{1/6}$.

Consecutive quadratic residues or non-quadratic residues

Let H(p) be the largest string of consecutive nonzero quadratic residues or quadratic non-residues modulo p. For example, with p = 7 we have that the nonzero quadratic residues are $\{1, 2, 4\}$ and the quadratic non-residues are $\{3, 5, 6\}$. Therefore H(7) = 2.

р	H(p)	
11	3	
13	4	
17	3	
19	4	
23	4	
29	4	
31	4	

Enrique Treviño

The least quadratic non-residue and related problems

Burgess proved in 1963 that $H(p) \leq Cp^{1/4} \log p$.

Mathematician	Year	С	Restriction
Norton*	1973	2.5	p > e ¹⁵
Norton*	1973	4.1	None
Preobrazhenskaya	2009	1.85+ <i>o</i> (1)	Not explicit
McGown	2012	7.06	$p > 5 \cdot 10^{18}$
McGown	2012	7	$p > 5 \cdot 10^{55}$
ET	2012	1.495+ o(1)	Not explicit
ET	2012	1.55	<i>p</i> > 10 ¹³
ET	2012	3.64	None

*Norton didn't provide a proof for his claim.

イロト イポト イヨト イヨト

ъ

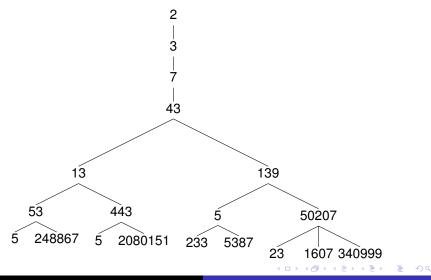
There are infinitely many primes

Start with $q_1 = 2$. Supposing that q_j has been defined for $1 \le j \le k$, continue the sequence by choosing a prime q_{k+1} for which

$$q_{k+1} \mid 1 + \prod_{j=1}^k q_j.$$

Then 'at the end of the day', the list $q_1, q_2, q_3, ...$ is an infinite sequence of distinct prime numbers.

Tree of possibilities



Enrique Treviño The least quadratic non-residue and related problems

Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin suggested two possible unique sequences.

- The first is to take $q_1 = 2$, then define recursively q_k to be the **smallest** prime dividing $1 + q_1 q_2 \dots q_{k-1}$.
- i,e. 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, ...
- It is conjectured that the first Mullin sequence touches all the primes eventually.
- Not much is known of this sequence.

イロト 不得 とくほ とくほとう

Second Euclid-Mullin Sequence

- The second Mullin sequence is to take q₁ = 2, then define recursively q_k to be the **largest** prime dividing 1 + q₁q₂...q_{k-1}.
- i.e. 2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129,
- Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, and 53 are missing from the first Euclid-Mullin sequence.
- Booker in 2012 showed that infinitely many primes are missing from the sequence.
- One of the results used in Booker's proof is the upper bound on g(p).

ヘロン 人間 とくほ とくほ とう

3

Let g(p) be the least quadratic non-residue mod p.

Theorem $g(p) \leq \sqrt{p} + 1.$

Proof.

Suppose g(p) = q with $q > \sqrt{p} + 1$. Let *k* be the ceiling of p/q. Then p < kq < p + q, so $kq \equiv a \mod p$ for some 0 < a < q, and therefore kq is a quadratic residue modulo *p*. Since $q > \sqrt{p} + 1$, then $p/q < \sqrt{p}$, so *k* is at most the ceiling of $\sqrt{p} < \sqrt{p} + 1 < q$. Therefore *k* is a quadratic residue modulo *p*. But if *k* and *kq* are quadratic residues modulo *p*, then *q* is a square modulo *p*. Contradiction!

- The largest string of quadratic non-residues is $< 2\sqrt{p}$.
- Suppose {*a* + 1, *a* + 2, ..., *a* + *H*} are all quadratic residues mod *p*.
- For *n* a non-residue, na + n, ..., na + Hn are non-residues.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k + 1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k + 1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-residue in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of quadratic non-residues is $< 2\sqrt{p}$.
- Suppose {*a* + 1, *a* + 2, . . . , *a* + *H*} are all quadratic residues mod *p*.
- For *n* a non-residue, na + n, ..., na + Hn are non-residues.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k + 1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k + 1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-residue in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of quadratic non-residues is $< 2\sqrt{p}$.
- Suppose {*a* + 1, *a* + 2, ..., *a* + *H*} are all quadratic residues mod *p*.
- For *n* a non-residue, na + n, ..., na + Hn are non-residues.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-residue in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of quadratic non-residues is $< 2\sqrt{p}$.
- Suppose {*a* + 1, *a* + 2, ..., *a* + *H*} are all quadratic residues mod *p*.
- For *n* a non-residue, na + n, ..., na + Hn are non-residues.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-residue in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of quadratic non-residues is $< 2\sqrt{p}$.
- Suppose {*a* + 1, *a* + 2, ..., *a* + *H*} are all quadratic residues mod *p*.
- For *n* a non-residue, na + n, ..., na + Hn are non-residues.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k + 1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k + 1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-residue in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

The primes that Euclid forgot

Theorem

Let $Q_1, Q_2, ..., Q_r$ be the smallest r primes omitted from the second Euclid-Mullin sequence, where $r \ge 0$. Then there is another omitted prime smaller than

$$24^2 \left(\prod_{i=1}^r Q_i\right)^2.$$

Using the deep results of Burgess, Booker showed that the exponent can be replaced with any real number larger than $\frac{1}{4\sqrt{e}-1} = 0.178734..., \text{ provided that } 24^2 \text{ is also replaced by}$ a possibly larger constant.

Proof Sketch

Let $X = 24^2 (\prod_{i=1}^r Q_i)^2$. Assume there is no prime missing from [2, X] besides Q_1, \ldots, Q_r . Let p be the prime in [2, X] that is last to appear in the sequence $\{q_i\}$. Let n be such that $q_n = p$. Then $1 + q_1 \ldots q_{n-1} = Q_1^{e_1} \ldots Q_r^{e_r} p^e$. Let d be the smallest number satisfying the following conditions:

(i)
$$d \equiv 1 \pmod{4}$$
,
(ii) $d \equiv -1 \pmod{Q_1 \dots Q_r}$
(iii) $\left(\frac{d}{p}\right) = \left(\frac{-1}{p}\right)$.

- Using the Chinese Remainder Theorem and the bound on H(p) yields that $d \le X$.
- Given the conditions on *d* and using that *d* ≤ *X* shows that *d* is both a quadratic residue and a non-residue mod 1 + *q*₁*q*₂...*q*_{n-1}. Contradiction!

The primes that Euclid forgot **Dirichlet Characters**

Legendre Symbol

$$\int 0 \quad , \quad \text{if } a \equiv 0 \mod p,$$

Let
$$\left(\frac{a}{p}\right) = \begin{cases} 1 & , & \text{if } a \text{ is a square mod } p \end{cases}$$

 $\left(\frac{a}{p}\right) = \begin{cases} 1 & , & \text{if } a \text{ is a quadratic non-residue mod } p. \\ -1 & , & \text{if } a \text{ is a quadratic non-residue mod } p. \end{cases}$

 $\left(\frac{a}{p}\right)$ has the following important properties: • $\left(\frac{a}{p}\right) = \left(\frac{a+p}{p}\right)$ for all a. • $\left(\underline{a}\right)\left(\underline{b}\right) = \left(\underline{ab}\right)$ for all a, b.

•
$$\binom{a}{p} \neq 0$$
 if and only if gcd $(a, p) = 1$

イロト 不得 とくほ とくほ とうほ

Dirichlet Character

Let *n* be a positive integer.

 $\chi:\mathbb{Z}\to\mathbb{C}$ is a Dirichlet character mod *n* if the following three conditions are satisfied:

- $\chi(a+n) = \chi(a)$ for all $a \in \mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a) \neq 0$ if and only if gcd (a, n) = 1.

The Legendre symbol is an example of a Dirichlet character.

イロト 不得 とくほ とくほとう

A simple but powerful idea

Let
$$g(p) = m$$
 be the least quadratic non-residue modulo p .
Suppose $\chi(a) = \left(\frac{a}{p}\right)$ Then $\chi(n) = 1$ for $n = 1, 2, 3, ..., m - 1$
and $\chi(m) = -1$. Therefore

$$\sum_{i=1}^m \chi(i) = m - 2 < m,$$

and

$$\sum_{i=1}^k \chi(i) = k \text{ for all } k < m.$$

Therefore bounding $\sum_{i=1}^{n} \chi(i)$ can give an upper bound for g(p).

Pólya–Vinogradov

Let χ be a Dirichlet character to the modulus q > 1. Let

$$S(\chi) = \max_{M,N} \left| \sum_{n=M+1}^{M+N} \chi(n) \right|$$

The Pólya–Vinogradov inequality (1918) states that there exists an absolute universal constant *c* such that for any Dirichlet character $S(\chi) \le c\sqrt{q} \log q$.

Under GRH, Montgomery and Vaughan showed that $S(\chi) \ll \sqrt{q} \log \log q$.

Paley showed in 1932 that there are infinitely many quadratic characters such that $S(\chi) \gg \sqrt{q} \log \log q$.

イロト イポト イヨト イヨト 三日

Vinogradov's Trick: Showing $g(p) \ll p^{\frac{1}{2\sqrt{e}}+\varepsilon}$

• Suppose
$$\sum_{n \le x} \chi(n) = o(x)$$
.

Let y = x^{1/√e+δ} for some δ > 0. So log log x − log log y = log (1/√e + δ) < 1/2

• Suppose
$$g(p) > y$$
.

$$\sum_{n \le x} \chi(n) = \sum_{n \le x} 1 - 2 \sum_{\substack{y < q \le x \\ \chi(q) = -1}} \sum_{n \le \frac{x}{q}} 1,$$

where the sum ranges over q prime. Therefore we have

$$\sum_{n \le x} \chi(n) \ge \lfloor x \rfloor - 2 \sum_{y < q \le x} \left\lfloor \frac{x}{q} \right\rfloor \ge x - 1 - 2x \sum_{y < q \le x} \frac{1}{q} - 2 \sum_{y < q \le x} 1.$$

ヘロン 人間 とくほ とくほ とう

1

It took almost 50 years before the next breakthrough. It came from the following theorem of Burgess:

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where q > 1, r is a positive integer and $\epsilon > 0$ is a real number. Then

$$|S_{\chi}(M,N)| = \left|\sum_{M < n \le M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon}$$

for r = 1, 2, 3 and for any $r \ge 1$ if q is cubefree, the implied constant depending only on ϵ and r.

イロト イポト イヨト イヨト

Consider

$$\left|\sum_{n\leq N}\chi(n)\right|.$$

By Burgess

$$\left|\sum_{n\leq N}\chi(n)\right|\ll N^{1-\frac{1}{r}}q^{\frac{r+1}{4r^2}+\epsilon}.$$

However, if $\chi(n) = 1$ for all $n \leq N$, then

$$N \leq \left| \sum_{n \leq N} \chi(n) \right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon},$$

S0

$$N^{\frac{1}{r}} \ll q^{\frac{r+1}{4r^2}+\epsilon}$$

 $N \ll q^{\frac{1}{4} + \frac{1}{4r} + \epsilon r}.$

Hence

★ ∃ → ∃

Now we know why

$$g(p) \ll p^{rac{1}{4\sqrt{e}}+arepsilon},$$

but how do we go from there to be able to figure out the theorem:

Theorem (ET)

Let g(p) be the least quadratic non-residue mod p. Let p be a prime greater than 10^{4732} , then $g(p) < p^{1/6}$.

ヘロン 人間 とくほ とくほ とう

3

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let r \geq 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \le 2.74 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

イロト イポト イヨト イヨト

э

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let r \geq 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \leq 2.74 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

ヘロト ヘアト ヘビト ヘビト

3

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p 1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

イロト イポト イヨト イヨト

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p 1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

ヘロン ヘアン ヘビン ヘビン

э

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime *p* > 3 there is a primitive root *g* and an integer *x* ∈ [1, *p* − 1] with log_{*g*} *x* = *x*, that is, *g^x* ≡ *x* (mod *p*).
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime *p* > 3 there is a primitive root *g* and an integer *x* ∈ [1, *p* − 1] with log_{*g*} *x* = *x*, that is, *g^x* ≡ *x* (mod *p*).
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

ヘロン 人間 とくほ とくほ とう

ъ

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime *p* > 3 there is a primitive root *g* and an integer *x* ∈ [1, *p* − 1] with log_{*g*} *x* = *x*, that is, *g^x* ≡ *x* (mod *p*).
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

ヘロト 人間 とくほ とくほ とう

ъ

Thank you!

Enrique Treviño The least quadratic non-residue and related problems

イロト イポト イヨト イヨ