Summer Research Projects for First Year Students

Enrique Treviño
Lake Forest College

California State University, Chico Colloquium October 17, 2016

Richter Scholar Program

■ The Richter Scholar Summer Research Program provides students with the opportunity to conduct independent, individual research with Lake Forest College faculty early in their academic careers (have to be first year students).

- Students work one-on-one with a faculty member, doing independent research in one of a wide variety of fields. At the end of the program students present their work either via a poster or a presentation at the Richter Scholar Symposium.

Richter Scholar Program

■ The Richter Scholar Summer Research Program provides students with the opportunity to conduct independent, individual research with Lake Forest College faculty early in their academic careers (have to be first year students).
■ Students work one-on-one with a faculty member, doing independent research in one of a wide variety of fields. At the end of the program students present their work either via a poster or a presentation at the Richter Scholar Symposium.

Projects

■ What's so rational about the alphabet? Marina Rawlings and Kevin Kupiec. Summer 2014, three week project.
■ Finding perfect polynomials mod 2. Ugur Caner Cengiz. Summer 2014, 10 week project.
■ On Tupper's self-referential formula. Margaret Fortman.
Summer 2015, 4 week project.

Projects Continued

■ First-world solutions to First-year problems. Robert Mecham
Summer 2015, 10 week project.

- Beatty sequences and the prime race. Noel Orwothwun
Summer 2016, 4 week project.

Marina and Kevin

Background

■ "Walking on Real Numbers" by Aragón, Bailey, Borwein and Borwein.
■ Consider a number in base 4. For example π. In base 4,

$$
\pi=3.0210033312222020201122030020310301 \ldots
$$

because

$$
\pi=3+0\left(\frac{1}{4}\right)+2\left(\frac{1}{4^{2}}\right)+1\left(\frac{1}{4^{3}}\right)+\ldots
$$

■ We start at the origin in the Cartesian plane. We move a unit to the right whenever we hit a digit 0 , we move a unit up whenever we hit a digit 1, we move a unit left whenever we hit a digit 2 and we move a unit down if we hit a digit 3.

Walking on π

Walking on the first 100 billion digits of π reveals the following picture:

Easier Example

Walking on the number 419636198 which can be rewritten in base 4 as
121000302033212_{4}.

Inspiration

1049012271677499437486619280565448601617567358491560876166848380843144358447 2528755516292470277595555704537156793130587832477297720217708181879659063736 5767487981422801328592027861019258140957135748704712290267465151312805954195 3997504202061380373822338959713391954

1612226962694290912940490066273549214229880755725468512353395718465191353017 3488143140175045399694454793530120643833272670970079330526292030350920973600 4509554561365966493250783914647728401623856513742952945308961226815274887561 5658076162410788075184599421938774835

Project

■ For each letter of the alphabet, find a rational that satisfies that if you random walk through that rational, you get the letter of the alphabet.

- Build a computer program that can use the information above to figure out the rational that works for a particular phrase.

Alphabet

How do you find the rational for a particular letter?

- Find a string of digits that "spell out" your letter in such a way that you end up where you started. For example, for the letter "D", it would be $1,0,1,2,1,0,1,2,1,0$, $1,2,1,0,1,2,1,0,1,2,0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,0,1,2,1,0,1,2,1,0,1,2,1,0,1$, $2,1,0,1,2,0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,0,3,0,1,2,0,3,0,3,2,0,0,3,2,0,0,3,2,0$, $3,2,0,0,3,2,0,3,2,3,0,2,3,0,3,2,0,0,3,2,2,3,0,0,3,2,2,1,3,0,3,0,1,3,3,2,1,3,3,0,1,3,3$, $2,1,3,3,0,1,3,3,2,1,3,3,0,1,3,3,2,1,3,3,0,1,3,3,2,1,3,3,0,1,3,3,2,1,3,3,0,1,3,2,2,3,0$, $0,1,3,2,2,3,0,0,3,2,2,0,3,2,3,0,2,3,0,2,3,2,0,3,2,2,0,3,2,0,3,2,2,0,3,2,2,0,3,2,1,2,0$, 3, 2.
- Consider the dot product with $\left\{1 / 4,1 / 4^{2}, 1 / 4^{3}, \ldots, \ldots\right\}$. In our example we'd have

$$
1\left(\frac{1}{4}\right)+0\left(\frac{1}{4^{2}}\right)+\ldots=
$$

6384779382043951036217348661253680515005885357484535471589654514956414794662721006368542 597248986985323127416704519810815261318970154183 / 2325883917745942049757836185241614509931652354199417792900768637378045721962873354643811 3622840434097944400691400517693873107252115668992

Alphabet Continued

One issue with just finding the rational as above, is that the random walk will now continue indefinitely to the right as the expansion ends with infinitely many zeroes. To fix this, we consider the number of digits in the representation of the letter and then do a geometric series expansion.
For example with the letter "D", it has 227 digits. Let the rational representation be x. Then the rational that loops itself over and over would be

$$
x+4^{-227} x+\left(4^{-227}\right)^{2} x+\ldots=\frac{1}{1-4^{-227}} x
$$

Example: Numerator has 1461 digits

Abstract

641854286382104122265200073944393190340011436268004432577571447976969296450247665751776272 405057553827438925969290051756674576913488858091263786508005725144276413385765710561587363 482139307381096359854742736246056364606411853710240210838309635777126658624141964405801697 538761519303363624429506433569139845141303413401779804700444621146008340211436562946673232 391449313491972565702387067992396816596732432949838189092600300584534318766223291315042934 725070960316514014092307814602625365423361837293666346883059989463098708376701624704016978 803920535031065200711464682288735228769534369356957599536887159812053111225385766451323878 188436140934811052537676417819418096135418723005929009328849285700633999117150205240088751 436606031527467025385772739648490580316687900199530319421020007627044859727775885970673654 507849324360814426805941741060561607691708491819055405764931955346124283322581158236157221 647832036887579323344110548422155275728546356602230968111016031896238708987904261441315730 292424096621206710097312614206010151004755516130368571079892634697115770590012588338346791 907141245104520040867315687457589934523478684386659059913639838770608247772651904954071923 587866884617092293524233431341983072323511438055096817982472926085203992537079637812547170 498573974635154906106088204024068317390622842775882155790558573409725108109463836973194740 508644793111989536495578610726887955329063004411414975846404525187256322216114075385473674 397739904630184354338 / 126674424514970223578537504466118411976171966868895503730665232632837902735682541653417876 014878156372508169110744841821162915521622670631754088356466641623019019896389625333691652 770813774391031103664248807344356746245382899693357312535457656424716306662682308343301591 610242630147003082003497030984505342763834897960485862185726309723618848617291422317922519 689528909828938766133075583223177391564592981775308733440193688654151400521011091540140068 004099158830291243223810828297429069672268063243642269348274853173524309207744752729606685 517343686551106782577609822587577670721338720441411298211430894226110142126271669400020785 789054681782589918224694756060272014028507690568222689819114173808177365490633406610071782 301403471614218259048720878397961323898405004580471459935392301986846708399220821016928625 179476168461504765985153745313990183725439856182952272182114412285739778784640885518530351 298132877724875117979412822233762171861896273928052890479778305938020881793196095157805917 743773674832775857746400386259283092430319132653709685036171551286454535369295323384086146 386433517745574077095639731772763858146540261995404484359857682806220026524930209367091528 052689296670137048399770680431732046653458493733812635526497390599745948173668077993555764 934524227737565940726399795462669585610790128091484728575376256223772829027140290308793426 973812948111151005630998698365112200166278554373730556311050253932991586142265680272136632 2297726544372508603187

Picture

Margaret

Summer Research Projects for First Year Students

Tupper's self-referential formula

$$
\frac{1}{2}<\left\lfloor\bmod \left(\left\lfloor\frac{y}{17}\right\rfloor 2^{-17\lfloor x\rfloor-\bmod (\lfloor y\rfloor, 17)}, 2\right)\right\rfloor
$$

Graph of the above equation for $0 \leq x \leq 105$ and

$$
k \leq y \leq k+17 \text { is }
$$

for k equal to

4858450636189713423582095962494202044581400587983244549483093085061934704708809 92845064476986552436484999724702491511911041160573917740785691975432657185544205721 04457358836818298237541396343382251994521916512843483329051311931999535024137587652 39264874613394906870130562295813219481113685339535565290850023875092856892694555974 28154638651073004910672305893358605254409666435126534936364395712556569593681518433 48576052669401612512669514215505395545191537854575257565907405401579290017659679654 80064427829131488548259914721248506352686630476300

Project

For a given sentence, find the integer k such that the graph of Tupper's formula looks like that sentence for $0 \leq x \leq 105$ and $k \leq y \leq k+17$.

Example

Chict 5tate :

Plot of Tupper's formula for $0 \leq x \leq 105$ and $k \leq y \leq k+17$ when k is

246641574721844232396499453872792247085081268410566246187843 358699671012522156267087356200785676815196036704247458303998 407761354401570971203797862697943290126358474081896070034211 084541529896192106527981670856136524088640207896988289615419 947707824539772480933244860946382461167190440425439083107428 66615477934678465501917671424

How to get it done

$|$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

As the previous project, the key is figuring out how to do a letter first.

1	1	1
0	0	1
1	1	1
1	0	1
1	1	1

Letter a

1	1	1
0	0	1
1	1	1
1	0	1
1	1	1

The binary number for the letter a is 111011010111111 Multiply by 2^{17} to move column to the right.
Formula for the lowercased a is:

$$
17\left((1+2+4+16)+(1+4+16) 2^{17}+(1+2+4+8+16) 2^{34}\right)
$$

Noel

Beatty Sequences

■ Given a positive irrational number θ, the Beatty sequence associated to θ is the sequence of integers:

$$
\lfloor\theta\rfloor,\lfloor 2 \theta\rfloor, \ldots
$$

- If two positive irrational numbers α, β satisfy $\frac{1}{\alpha}+\frac{1}{\beta}=1$ then we say that the Beatty sequences for α and β are complementary since their union is \mathbb{N} and the intersection is empty.
- For the rest of this section, let A be the Beatty sequence associated to α and B the one associated to β. Then

Beatty Sequences

■ Given a positive irrational number θ, the Beatty sequence associated to θ is the sequence of integers:

$$
\lfloor\theta\rfloor,\lfloor 2 \theta\rfloor, \ldots
$$

■ If two positive irrational numbers α, β satisfy $\frac{1}{\alpha}+\frac{1}{\beta}=1$, then we say that the Beatty sequences for α and β are complementary since their union is \mathbb{N} and the intersection is empty.

- For the rest of this section, let A be the Beatty sequence associated to α and B the one associated to β. Then

Beatty Sequences

■ Given a positive irrational number θ, the Beatty sequence associated to θ is the sequence of integers:

$$
\lfloor\theta\rfloor,\lfloor 2 \theta\rfloor, \ldots
$$

■ If two positive irrational numbers α, β satisfy $\frac{1}{\alpha}+\frac{1}{\beta}=1$, then we say that the Beatty sequences for α and β are complementary since their union is \mathbb{N} and the intersection is empty.
\square For the rest of this section, let A be the Beatty sequence associated to α and B the one associated to β. Then

$$
A \cup B=\mathbb{N} \quad A \cap B=\emptyset
$$

Primes in Beatty Sequences

■ A theorem of Ribenboim says that the density of primes that land on A is $\frac{1}{\alpha}$. So we expect that among the first n primes, $\frac{n}{\alpha}$ of them land in A and $\frac{n}{\beta}$ of them land in B.

- The question is whether there's any bias in one direction.
- For the rest of the talk, we'll just consider a value for α and deduce β in terms of α (since $\frac{1}{\alpha}+\frac{1}{\beta}=1$).

Primes in Beatty Sequences

- A theorem of Ribenboim says that the density of primes that land on A is $\frac{1}{\alpha}$. So we expect that among the first n primes, $\frac{n}{\alpha}$ of them land in A and $\frac{n}{\beta}$ of them land in B.
- The question is whether there's any bias in one direction.

■ For the rest of the talk, we'll just consider a value for α and deduce β in terms of α (since $\frac{1}{\alpha}+\frac{1}{\beta}=1$).

Figure: Difference for $\alpha=\sqrt{2}$ up to 5000000

Figure: Difference for $\alpha=\sqrt{3}$ up to 1000000

Figure: Difference for $\alpha=\pi$ up to 1000000

Bias between consecutive primes

■ Soundararajan and Lemke-Oliver recently (this year!) discovered that there's a repulsion among the last digit of consecutive primes. For example if a prime ends in the digit 1, the next prime is less likely to end with digit 1 than randomness suggests.

- This phenomenon happens in any modulus. We'll focus on mod 3 where primes (other than 3) have two possibilities, i.e., $1 \bmod 3$ and $2 \bmod 3$.
- Is there such a bias with Beatty sequences?

Bias between consecutive primes

■ Soundararajan and Lemke-Oliver recently (this year!) discovered that there's a repulsion among the last digit of consecutive primes. For example if a prime ends in the digit 1, the next prime is less likely to end with digit 1 than randomness suggests.
■ This phenomenon happens in any modulus. We'll focus on mod 3 where primes (other than 3) have two possibilities, i.e., $1 \bmod 3$ and $2 \bmod 3$.

■ Is there such a bias with Beatty sequences?

In the following pictures, the red color represents when the consecutive primes land on different Beatty sequences, the blue color represents when they both land on A, and the yellow color when they both land on B.
The first graph is for $\alpha=\sqrt{2}$, the second is for $\alpha=\sqrt{3}$ for numbers up to 2000000.

These ones are for $\alpha=\pi$, and $\alpha=e$ for numbers up to 1000000 .

Chebyshev Bias

■ Chebyshev noticed that primes 1 modulo 3 seem to appear less often than primes 2 modulo 3.

- It turns out that in general, if a is such that there is an x with $x^{2} \equiv a \bmod n$, then primes modulo a appear less frequently.
- Does this phenomenon occur in the sequence A of a Beatty sequence?

Chebyshev Bias

■ Chebyshev noticed that primes 1 modulo 3 seem to appear less often than primes 2 modulo 3.
■ It turns out that in general, if a is such that there is an x with $x^{2} \equiv a \bmod n$, then primes modulo a appear less frequently.

- Does this phenomenon occur in the sequence A of a Beatty sequence?

The first graph is for $\alpha=\sqrt{2}$ and the second for $\alpha=\sqrt{3}$ up to 50000.

Robert

Enrique Treviño

First year studies

■ At Lake Forest College every incoming first year student gets assigned a "first-year-studies" course.
■ Students rank their choices.
■ The administration then decides where to send students depending on several factors:
1 All classes should have roughly the same number of students.
2 Some classes have an ACT/SAT threshold.
3 Some classes do not allow athletes (because the classes do many field trips).

- Can we build a computer program that does this for the administration?

First year studies

■ At Lake Forest College every incoming first year student gets assigned a "first-year-studies" course.
■ Students rank their choices.
■ The administration then decides where to send students depending on several factors:
1 All classes should have roughly the same number of students.
2 Some classes have an ACT/SAT threshold.
3 Some classes do not allow athletes (because the classes do many field trips).
■ Can we build a computer program that does this for the administration?

Answer

Yes.

Process

■ Start out small, work with toy problems and familiarize yourself with the language and problem

- Gather the data needed and break it down

■ Separate the data into two main groups groups: Students, Classes

- Divide the two main groups into even smaller groups: males/females, athletes, ACT scores, Non-athlete classes, Classes with certain ACT scores
- Make minor changes to your toy problem and feed the data into the main code
■ Analyze the outcome and rejoice in a job well done!

Mishaps

There were several things that held us back for days and sometimes weeks

■ Missing and extra numbers in the files
■ Classes that had few, if any, people pick them
■ Student-athletes picking non-athlete classes
■ Misspelling of classes
■ BLANK SPACES!!!!!!!!!

Results

Choices

- 1st Choice
- 2nd Choice
- 3rd Choice
- 4th Choice
- 5th Choice
- 6th Choice

Things Robert learned (according to him)

■ A new programming language that will be of use as I continue in the math/CS fields
■ You can never check your data too many times
■ Always start out small and double check each step
■ Solving a problem no matter the size one of the greatest feelings

Caner

Enrique Treviño

Perfect Numbers

$$
\begin{gathered}
6=1+2+3 \\
28=1+2+4+7+14
\end{gathered}
$$

Polynomials Mod 2

■ A polynomial mod 2 is one of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

where $a_{i} \in\{0,1\}$.
■ We consider the operation mod2, i.e., $1+1=0,0+1=1+0=1,0+0=0$.
■ For example

$$
x^{2}+1=x^{2}+2 x+1=(x+1)^{2}
$$

Perfect Polynomials Mod 2

■ Let $\sigma(P)$ be the sum of the divisors of a polynomial P in mod 2.

- A polynomial is said to be perfect mod 2 if $\sigma(P)=P$.
- $x^{2}+x=x(x+1)$, so

$$
\sigma\left(x^{2}+x\right)=1+x+(x+1)+x^{2}+x=x^{2}+x
$$

So it is perfect.

$$
\sigma\left(x^{2}+1\right)=1+(1+x)+\left(1+x^{2}\right)=1+x+x^{2}
$$

Degree	Factorization into Irreducibles
5	$T(T+1)^{2}\left(T^{2}+T+1\right)$
	$T^{2}(T+1)\left(T^{2}+T+1\right)$
11	$T(T+1)^{2}\left(T^{2}+T+1\right)^{2}\left(T^{4}+T+1\right)$
	$T^{2}(T+1)\left(T^{2}+T+1\right)^{2}\left(T^{4}+T+1\right)$
	$T^{3}(T+1)^{4}\left(T^{4}+T^{3}+1\right)$
	$T^{4}(T+1)^{3}\left(T^{4}+T^{3}+T^{2}+T+1\right)$
15	$T^{3}(T+1)^{6}\left(T^{3}+T+1\right)\left(T^{3}+T^{2}+1\right)$
	$T^{6}(T+1)^{3}\left(T^{3}+T+1\right)\left(T^{3}+T^{2}+1\right)$
16	$T^{4}(T+1)^{4}\left(T^{4}+T^{3}+1\right)\left(T^{4}+T^{3}+T^{2}+T+1\right)$
20	$T^{4}(T+1)^{6}\left(T^{3}+T+1\right)\left(T^{3}+T^{2}+1\right)\left(T^{4}+T^{3}+T^{2}+T+1\right)$
	$T^{6}(T+1)^{4}\left(T^{3}+T+1\right)\left(T^{3}+T^{2}+1\right)\left(T^{4}+T^{3}+1\right)$

