
Finding Perfect Polynomials modulo 2

Ugur Caner Cengiz

October 20, 2014

Contents

1 Perfect Polynomials modulo 2 3
1.1 Introduction to the Problem . 3
1.2 Some Useful Properties . 4

2 The Programs 6
2.1 Earlier Versions . 6

2.1.1 A Program for Finding the Sum of Divisors 6
2.1.2 A program for generating polynomials 8
2.1.3 Main Finding Algorithm 8

2.2 Improvements . 10
2.2.1 Speed . 10
2.2.2 More Specific Functions 11

2.3 Results . 13

3 Reflections 14

List of Figures 15

Bibliography 16

2

Chapter 1

Perfect Polynomials modulo 2

1.1 Introduction to the Problem
In 1941, E. F. Canaday published a part of his dissertation on perfect polyno-
mials modulo 2. In this paper he regarded a perfect polynomial as a polynomial
whose sum of divisors equals itself even though he called them “one-rings” [1].
If we let σ(A) =

∑
D|A

D, then A is a perfect polynomial provided that σ(A) = A.

Since the polynomials are mod 2, the coefficients were only able to be 1 or 0.
Canaday has identified an infinite class of perfect polynomials in addition

to the 11 polynomials that do not fit in this class. The infinite class can be
represented as x2n−1(x+1)2n−1 where n is a positive integer. The other perfect
polynomials Canaday identified are shown in figure 1.1, which uses ‘T’ as a
variable. Throughout the paper variable ‘x’ will be used instead.

Figure 1.1: Canaday’s list for perfects

3

Canaday noticed that all of the perfect polynomials he found were divisible
by x × (x + 1). He suggested that perfect polynomials modulo 2 exist in two
forms: the ones that are divisible by x × (x + 1) and the ones that are not.
Since x× (x+ 1) looked similar to n× (n+ 1), which would always give an even
integer, perfect polynomials divisible by x × (x + 1) are called ‘even’ and the
rest is called ‘odd’. Even though Canaday did not use the term ‘odd’ for his
one-rings, he proved that any odd perfect polynomial has to be a perfect square
[1]. More recent work by Luis Gallardo and Olivier Rahavandrainy proves that
an odd perfect polynomial would have at least 5 distinct prime factors [3].

In concurrence with his findings, Canaday conjectured that there are no odd
perfect polynomials. He had found some infinite classes of perfects; however,
and the highest degree of a perfect polynomial he found was 20. Higher degrees
of polynomials are much harder to analyze. Nevertheless, by using computers it
is possible to check higher degrees for perfects polynomials. In this report some
of these programs will be discussed.

1.2 Some Useful Properties
An important property of σ function is that it is multiplicative over integers.

Lemma: If gcd(m,n) = 1, then σ(mn) = σ(m) ×σ(n).

Proof. Every positive integer can be uniquely factored using prime numbers.

Let m = (pα1
1 pα2

2 pα3
3 ...pαkk) and similarly n = (qβ1

1 qβ2
2 qβ3

3 ...qβll).

Therefore, all pi and qj are distinct since (m,n) = 1.

mn = (pα1
1 pα2

2 pα3
3 ...pαkk)(qβ1

1 qβ2
2 qβ3

3 ...qβll)

Let σ(m) = (a1 + a2 + ...+ at) and σ(n) = (b1 + b2 + ...+ bz).

σ(m)σ(n) = (a1(b1+b2+...+bz)+a2(b1+b2+...+bz)+...+at(b1+b2+...+bz))(1.1)

Because all pi and qj are distinct, every ak and bl are distinct except for 1.
This implies that the sum (1.1) has every divisor of mn and no element is
repeated. Therefore, the sum equals σ(mn). σ(mn) = σ(m)σ(n)

Similar to positive integers every polynomial can be factored using irre-
ducible polynomials of lesser degrees. Therefore, σ is also multiplicative over
polynomials. This property is useful to prove a property in perfect polynomials
modulo 2.

Theorem: A perfect polynomial A is divisible by x if and only if it is also
divisible by x+ 1.

Proof. ⇒

Let x | A and σ(A) = A. For contradiction assume that (x+ 1)6 |A.

4

Let A = (xα)Π(P βii),

Then σ(A) = (xα + xα−1 + ...+ x+ 1)Π(P βii + P βi−1
i + ...+ Pi + 1) = A

(x+1)6 | Pi and x6 | Pi which imply Pi(0) = Pi(1) = 1. because of the Remainder
Theorem in polynomials and we are using modulo 2. Notice that any complete
polynomial with an odd degree is divisible by (x+ 1).

For example, let Q = (x2n+1 + x2n + ... + x + 1), then Q = (x + 1)(x2n +
x2n−2 + x2n−4...+ x2 + 1)

Therefore, α and all βi have to be even.

We know A = (xα + xα−1 + ...+ x+ 1)Π(P βii + P βi−1
i + ...+ Pi + 1)

Clearly, x6 | (xα + xα−1 + ...+ x+ 1).

Since βi is even (P βii +P βi−1
i + ...+Pi+ 1)(0) = (1 + 1 + 1 + ...+ 1) where there

are an odd number of 1’s. Hence, (P βii + P βi−1
i + ...+ Pi + 1)(0) = 1.

Thus, x does not divide either (xα+xα−1+...+x+1) or (P βii +P βi−1
i +...+Pi+1).

This implies x6 |A which is an obvious contradiction to what we were given.

Therefore, if A is perfect and x | A, then (x+ 1) | A.

⇐

Similarly, let (x+ 1) | A and σ(A) = A. For contradiction assume that x6 |A.

Let A = (x+ 1)αΠ(P βii),

Then σ(A) = ((x+1)α+(x+1)α−1+...+(x+1)+1)Π(P βii +P βi−1
i +...+Pi+1) =

A. Also, Pi(0) = Pi(1) = 1.

α and all βi have to be even because otherwise ((x + 1)α + (x + 1)α−1 + ... +
(x+ 1) + 1)(0) = 0 and ((P βii + P βi−1

i + ...+ Pi + 1))(0) = 0.

However, when α and all βi are even both ((x+1)α+(x+1)α−1+...+(x+1)+1)(1)
and ((P βii + P βi−1

i + ...+ Pi + 1))(1) equal 1.

This implies (x+ 1)6 |A which is a similar contradiction.

Hence, if A is perfect and (x+ 1) | A, then x | A .

Therefore, a perfect polynomial A is divisible by x if and only if it is also
divisible by x+1.

This proves that perfect polynomials modulo 2 can be separated into even
and odd perfect polynomials.

5

Chapter 2

The Programs

The main focus of this Richter 2014 project was to write a computer program
capable of finding perfect polynomials modulo 2. System for Algebra and Ge-
ometry (Sage) was used to code the programs. Sage is free, mathematically
inclined and uses Python, which is very easy to learn, to code. Sage offered
a very easy solution. By running R.<x> = IntegerModRing(2)[] as the initial
line of every workpage created on Sage, it was possible to use ‘x’ as a variable
which created polynomials modulo 2 instead of recognizing ‘x’ as a symbol.

The initial aim for the project was to write a program to calculate the
sum of the divisors of a polynomial. Then, it progressed into implementing a
recursive algorithm for a more sophisticated way of searching. The last aim was
to maximize the efficiency of the specialized programs for even and odd perfect
polynomials.

2.1 Earlier Versions

2.1.1 A Program for Finding the Sum of Divisors
Using the multiplicative property of σ and checking the sum of divisors of each
factor seemed to be much more effective than trying to find all the divisors of
the initial polynomial and add them up. Therefore, two helper functions were
developed named sigma1 and sigma2. sigma2 simply loops through every
factor and adds them up whereas sigma1 uses a property that comes from
calculus. If we let a factor of the main polynomial be P α ,
then σ(P α) = (Pα+Pα−1 + ...+P + 1) = Pα+1−1

P−1 . As seen in Figure 2.1, input
‘x’ is the factor and ‘y’ is its respective power.

Figure 2.1: Functions sigma1 and sigma2

6

The results from calculating σ for each factor need to be multiplied to find
the sum of divisors of the main polynomial. sumDivs(p) function uses sigma1
and sigma2 to do this.

Figure 2.2: Function sumDivs3(p) uses sigma1 and sigma2 to calculate σ(p)

As we walk through the steps in the program, first the program checks if the
polynomials is congruent to 0 or not. (This step was later omitted by the next
generation of sumDivs() programs.) Then, it factors the polynomial and runs
sigma1 or sigma2 for each factor according to ‘K’. The ‘K’ is just a limiting
point based on the power of a factor. The initial hypothesis was that after a
certain point running sigma1 would be faster as the division in the formula
would be easier than running sigma2. Then, all the results from the helper
functions are multiplied to give the correct result for σ(p). Some examples are
on Figure 2.3.

Figure 2.3: Some Examples of sumDivs3(p) Calculations

7

2.1.2 A program for generating polynomials
In the beginning of the project it was important to be able to generate polynomi-
als mod 2 to run sumDivs3() on them. The author’s initial misconception was
that we had to check every polynomial up to a certain degree with sumDivs3()
to check if it was perfect. Checking every polynomial up to a certain degree
would be accurate but also inefficient. The author had already written a pro-
gram to generate polynomials. A more efficient algorithm was used later.

Figure 2.4: polyGen(MaxDeg) Creates Polynomials

In Figure 2.4, it shows that the polynomials are created by converting the
base to 2 and regarding the number as a list if 1’s and 0’s which correspond
to the coefficients of the polynomial. Therefore 2MaxDeg+1 - 1 would have
MaxDeg + 1 number of 1’s representing the coefficients from 1 to xMaxDeg. In
Python, every for loop starts from the initial number and ends right before it
hits the final number entered in parentheses. Therefore, setting the loop from
1 to 2MaxDeg+1 makes sure that we produce every polynomials with maximum
degree of MaxDeg. Changing the final statement from print to return or
calculating sumDivs() within the generator program ensures that the output
created is not an expression but an operable polynomial with one variable.

Figure 2.5: Examples of Polynomials Created by polyGen(MaxDeg)

Figure 2.5 shows that the program works well and creates the polynomials.

2.1.3 Main Finding Algorithm
Even though creating polynomials up to a certain degree and checking each of
them for the possibility of being perfect would be an accurate solution to the
problem, it is very inefficient and it requires too many computations for higher
degrees. Thankfully, there is a much more sophisticated algorithm created by
Dr. Paul Pollack, who is an Assistant Professor in the Mathematics Depart-
ment at the University of Georgia. The algorithm moves the focus from finding
perfects to finding primitive perfects shortening the number of calculations.

Let A be primitive perfect if σ(A) = A and A cannot be written as a product
of co-prime polynomials BC where both B and C are also perfect. Let A = B×C

8

a non primitive perfect polynomial whereas B and C are primitive. Start the
process with checking if σ(B) = B. If it is, then B is perfect and we can output it.
If not, we calculate D where D = ((σ(B)) / (gcd(B, σB))). It’s clear that D | C.
Therefore, if gcd(B,D) > 1, then gcd(B,C) > 1 which means B and C are not
co-prime, a contradiction to what we started with. Hence, we stop. If B and D
have no common factor, then we let P be the greatest factor of D and restart
the algorithm taking BP,BP 2, BP 3, ..., BP k where degree of BP k < K. K is
only a defined maximum degree. Therefore, this algorithm creates a recursive
tree-like process looking for primitive perfects.

Figure 2.6: primPerf(B) is the Initial Program Written for This Algorithm

primPerf(B) basically does exactly what the algorithm says. It checks if B
is perfect. If not, it calculates D and gcd(B,D) and according to the result it
finds P and restarts the algorithm up to degree 20. One of the biggest problems
with this program was that after it found a perfect polynomial it did not stop.
Therefore, the “false check” system was introduced. In the cases where the
algorithm is supposed to stop and not return any output it returns false. Also,
the break statement in the second part of the while loop stops the loop if it found
a perfect. There were cases where primPerf(B) returned nothing. Therefore,
it was necessary to check the type of the output when a finder program was
being run to print out all the results from primPerf(B). Therefore, only the
outputs who had the same type as x where printed and the program worked
without a problem to find perfects.

Figure 2.7: Some Results of primPerf(B)

9

As you can see from Figure 2.7, primPerf(B) finds a perfect polynomial and
stops. The results presented here are already known perfects from Canaday’s
list. The results respectively are a member of the infinite class, 2th item and 4th
item on Figure 1.1. Another curious point is that the input of the calculations
was present as a factor of the polynomial. This is due to the calculations of P
within the algorithm.

2.2 Improvements

2.2.1 Speed

When primPerf(B) was first working on polynomials with higher degrees than
20 such as taking x30 as input and 200 as the limiting maximum degree, it was
slow. It took 21 minutes to run primPerf(x30) -and find no perfects of course-.
Then, with Dr. Enrique Treviño’s suggestion dynamic programming methods
were implemented within the function. Dynamic programming is simply a trade
off between memory and speed. Although it might be different and perhaps
harder to do it with other software, Sage offered a very user friendly approach
to dynamic programming. It has a built-in cache system which does exactly as
needed. By adding the line “@CachedFunction” right under the definition line,
the program starts saving a previously calculated input’s result. In recursive
functions this can immensely increase the speed. Figure 2.8 shows this.

Figure 2.8: Increasing Speed by Saving Previous Calculations

It is mandatory to note here that this was the first time primPerf(x30) was
calculated after “@CachedFunction” was added because after the saving starts
the results of the previously run inputs would be instantenous. Therefore, it
is very important to clear the caches after changing the maximum degrees and
before starting to run the program as otherwise the data is unreliable.

Another improvement on the speed was to increase the efficiency of sumDivs3(p).
The original aim was to determine the cut off degree for power where sigma2
becomes faster than sigma1. However, the results of the tests showed that Sage
is well equipped for doing high degree polynomial divisions and sigma1 was
faster than sigma2 % 99 of the time when polynomials up to degree 100 were
tested. The calculations which sigma2 completed faster showed no pattern or
consistency. In each trial the polynomial that was calculated faster with sigma2
was different. Hence, in sumDivs4(p) only sigma1 was used. Currently these
implementations prove sufficient for higher degree research; however, further
improvements might be possible and required in the future.

10

2.2.2 More Specific Functions

Because of the structural differences between even and odd perfect polynomi-
als, it was logical to further improve the original primPerf(B) function into
evenPerf(B) and oddPerf(B) functions.

Figure 2.9: evenPerf(B) Function

The evenPerf(B) function specializes in finding even perfect polynomials.
It takes seed polynomials in the form x1 , x2 , x4 , x6 and x2n−1 and checks
every resulting polynomial in the tree-like structure of the algorithm. Since the
divisibility by x and (x+1) are together the program also finds the polynomials
divisible by (x + 1). Considering the infinite class of perfect polynomials the
maximum degree has to be less than or equal to double the degree of the input.
Another important point in this polynomial is that it does not stop once it finds
perfect with the given seed polynomial. It goes up to checking the maximum
degree with every seed. Therefore, it finds every perfect polynomial that the seed
or P, the biggest factor of D which is calculated based on the seed polynomial,
is associated with. This is because it is known since Canaday that some certain
even perfect polynomials have the same factors. The inhibition of termination
is done by increasing the power even if a perfect is found. In this system the
perfects are printed instead of returned to the previous branch of the algorithm
so that multiple outputs are produced.

On the other hand, oddPerf(B) function is designed to stop once it finds
anything. This is because it is believed that there are no odd perfect polynomials
at all. If even one of them is found, that would mean that Canaday’s conjecture
is proven wrong with a counter example. In such a case the problem would be

11

solved and perhaps the programs would be modified for further research.

Figure 2.10: oddPerf(B) Function

As seen on Figure 2.10, the P value is squared. This is because it is known
that an odd perfect polynomial has to be a perfect square. Even the initial
finder program that creates polynomials and then calls oddPerf(B) squares the
polynomials before running. Also, it is hard to miss that oddPerf(B) is designed
to terminate once it finds anything very similar to its ancestor primPerf(B).

Figure 2.11: oddF inder() Function that Calls oddPerf(B)

This is the oddF inder() function that creates the polynomials to put in
oddPerf(B). It is noticeable that first the polynomial’s divisibility by x×(x+1)

12

is checked and then it is squared before oddPerf(B) is used. Since it is also
known that odd perfect polynomials have at least 5 distinct factors. Once the
program uses oddPerf(B) on polynomials up to a certain degree k, it is capable
of checking all the possible odd perfects up to degree 10k. Therefore, if the
maximum limiting degree within oddPerf(B) is 200, then only polynomials
with degree up to 20 must be used as B.

2.3 Results

Figure 2.12: Results up to Degree 200

Figure 2.12 shows the results of the programs up to degree 200. The initial
data comes from primPerf(B) but oddPerf(B) and evenPerf(B) programs
confirmed the results as well. The first 11 polynomials on Figure 2.12 are the
exact ones from Figure 1.1. The last six are members of the infinite class of
perfect polynomials modulo 2. Therefore, Canaday is absolutely correct, at least
up to degree 200 polynomials. Not only there is no odd perfect polynomials but
Canaday also found all the possible even perfect polynomials as well. This
brings the question whether there are any other perfect polynomials at all. It
is definitely a question for further research where higher degrees of polynomials
should be checked.

13

Chapter 3

Reflections

One word to describe my summer for Richter 2014 would be amazing. Prior to
this year and the Math 230 class with Dr. Treviño, I had never even thought
about majoring Mathematics. I had only taken the class because understanding
the basics of proofs sounded essential for any science. Now, I might even consider
a post-graduate degree in Math because it was nothing but fun so far.

I had always enjoyed facing new problems and trying to solve them as long
as they were not major life crises. This research project proved to be exactly
what I needed to accelerate my learning experience. I have tested my limits
and seen my strengths in necessary skills. For example, although coding was
not something I had ever tried, I realized I can teach myself a lot to be able to
code the programs I presented in this paper. Initially, Sage regarded x as an
expression; therefore, the polynomial forms I entered into the worksheets were
not mutable. Factoring was impossible. I searched for a way out and found
out that Sage is even capable of creating the polynomials in a specific mod p
which was 2 in our case. With factoring down, it was necessary to define the
σ function on Sage. Coding a working sumDivs(p) program took me a week.
After that, I thought I was done with most of the project since I was oblivious to
Dr. Pollack’s algorithm. Coding Dr. Pollack’s algorithm was 100 times harder
than working on sumDivs(p) since it had to be a recursive program which is
an area that I did not learn much in my CS 100 level class where I was learning
the very basics of Python. That also was manageable after long days of staring
at a computer and using trial and error method. However, I have been very
sceptical over my programs doubting that they work properly. My notebook is
full of monologues, debating over issues that come up during the coding process
and it has pages full of possible answers to the problems which are crossed out
one by one as I try each and every one of them. Terminating primPerf(B)
was one of the hard problems I had to face, personally. However, in the end it
worked (I think). Therefore, this summer definitely helped me to advance my
research skills, coding confidence and absolutely my patience.

Also, working with Dr. Treviño on various proofs and understanding Cana-
day’s paper was priceless. I don’t think a college student gets a lot of opportu-
nities to work one on one with a professor and ask any question. Being able to
understand even only portions of Canaday’s paper made me develop a keener
curiosity for Mathematics. I definitely will be working on more Math problems
in the future. I am grateful to everyone who made this summer possible.

14

List of Figures

1.1 Canaday’s list for perfects . 3

2.1 Functions sigma1 and sigma2 6
2.2 Function sumDivs3(p) uses sigma1 and sigma2 to calculate σ(p) 7
2.3 Some Examples of sumDivs3(p) Calculations 7
2.4 polyGen(MaxDeg) Creates Polynomials 8
2.5 Examples of Polynomials Created by polyGen(MaxDeg) 8
2.6 primPerf(B) is the Initial Program Written for This Algorithm . 9
2.7 Some Results of primPerf(B) 9
2.8 Increasing Speed by Saving Previous Calculations 10
2.9 evenPerf(B) Function . 11
2.10 oddPerf(B) Function . 12
2.11 oddF inder() Function that Calls oddPerf(B) 12
2.12 Results up to Degree 200 . 13

15

Bibliography

[1] E.F. Canaday The Sum of The Divisors of a Polynomial. Duke Mathe-
matical Journal, 8(4):721–737, 1941

[2] L. Gallardo. and O. Rahavandrainy. Odd Perfect Polynomials over F2
Journal de Théeorie des Nombres de Bordeaux, 19(1):165–174, 2007.

[3] L. Gallardo. and O. Rahavandrainy. There is no odd perfect polynomial
over F2 with four prime factors Portugaliae Mathematica, 66(2):131–145,
2009.

16

