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Definitions modulo 2

What do you mean by "modulo 2"?

In simple terms, ‘a mod b’ gives the remainder when integer a is
divided by non-zero integer b.

Therefore, mod 2 is very simple: if the number
is odd, then it is equivalent to 1 and if even, then it is equivalent to 0.

13 ≡ 1 and 54678 ≡ 0 (mod 2)
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Definitions What is "Perfect"?

Perfect Numbers
Sigma function σ

Definition
Lower case Greek letter sigma (σ) symbolizes an arithmetic function
that sums the positive divisors of a positive integer.
σ(n) =

∑
d |n

d

Definition
If σ(n) = 2n, then n is perfect.

Example

6
σ(6) = 1 + 2 + 3 + 6 = 12
Hence, 6 is perfect.
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Definitions What is "Perfect"?

Continuing on σ

Theorem
σ is multiplicative over integers.
If gcd(m,n) = 1, then σ(mn) = σ(m) ×σ(n)

Example

6 = 2 × 3 where 2 and 3 are prime.
σ(2)=(2 + 1) and σ(3)=(3+1)
σ(2)× σ(3)=3 × 4 = 12 = σ(6).
728 = 23×7×13
σ(728) = 1 + 2 + 4 + 7 + 8 + 13 + 14 + 26 + 28 + 52 + 56 + 91 +
104 + 182 + 364 + 728 = 1680
Note that σ(pq)= (pq + pq−1 + ...+ p + 1)
So, σ(23)×σ(7)×σ(13) = (8 + 4 + 2 + 1)(7 + 1)(13 + 1)
σ(23)×σ(7)×σ(13) = 15 ×8 × 14 = 1680
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Definitions Perfect Polynomials

Polynomials mod 2

For a polynomial mod 2, the coefficients are mod 2. Thus,
5x7+9x6+16x5+48x4+x3+4x2+71x +1 ≡ x7+x6+x3+x +1

x2 + 1 = 0 has no real roots. It’s irreducible.

Consider (x + 1)2 modulo 2

(x + 1)2 = (x + 1)× (x + 1) = x2 + 2x + 12

x2 + 2x + 12 ≡ x2 + 1 (mod 2)
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Definitions Perfect Polynomials

σ on polynomials

Definition
If σ(A) = A, then A is a perfect polynomial.

For example, x2 + x = x × (x + 1)
σ(x2 + x) = (x2 + x) + (x + 1) + x + 1 = x2 + 3x + 2
x2 + 3x + 2 ≡ x2 + x (mod 2)
So σ(x2 + x) = x2 + x (mod 2)
x2 + x is a perfect polynomial mod 2.
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Previous Research Others’

Canaday, Gallardo and Rahavandrainy

E. F. Canaday

Perfect polynomials mod 2 exist in two ways:
xh(x + 1)kA and B2, where B is relatively prime to x(x + 1)
Also, he found an infinite class of perfects: x2n−1(x + 1)2n−1

Conjecture that every perfect is divisible by x(x + 1)
In other words, no odd perfects

Gallardo and Rahavandrainy

Proved that odd perfects have at least 5 distinct irreducible factors.
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Previous Research Others’

Figure: Canaday’s list for perfects
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Previous Research Ours

The Algorithm to Find the Perfect Polynomials

Check if σB = B. Output B.

If not, compute D where D = σ(B) / gcd(B, σ(B))
If gcd(B, D) > 1, then stop. No output!
If the polynomial passes the test on step 3, then let P be the
greatest factor of D.
Restart the algorithm taking BP,BP2,BP3, ...,BPk where degree
of BPk < K .
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Previous Research Ours
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Our Research The Program

Beginning steps - primPerf()
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Our Research Main Results

Results up to degree 200

x × (x + 1)2 × (x2 + x + 1)
x × (x + 1)2 × (x2 + x + 1)2 × (x4 + x + 1)
(x + 1)× x2 × (x2 + x + 1)
(x + 1)× x2 × (x2 + x + 1)2 × (x4 + x + 1)
x3 × (x + 1)4 × (x4 + x3 + 1)
x3 × (x + 1)6 × (x3 + x + 1)× (x3 + x2 + 1)
(x + 1)3 × x4 × (x4 + x3 + x2 + x + 1)
x4 × (x + 1)4 × (x4 + x3 + 1)× (x4 + x3 + x2 + x + 1)
x4 × (x + 1)6 × (x3 + x + 1)× (x3 + x2 + 1)× (x4 + x3 + x2 + x + 1)
(x + 1)3 × x6 × (x3 + x + 1)× (x3 + x2 + 1)
(x + 1)4 × x6 × (x3 + x + 1)× (x3 + x2 + 1)× (x4 + x3 + 1)
x × (x + 1)
x3 × (x + 1)3

x7 × (x + 1)7

x15 × (x + 1)15

x31 × (x + 1)31 and x63 × (x + 1)63
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Our Research Speed!!!

Speed

def sigma1(x, y):
return (xy+1 − 1)/(x − 1)

def sigma2(x, y):
sum = 0
for pow in range(0, y+1):

sum = sum + (xpow )
return sum

sigma1 and sigma2 speed testing

Dynamic Programming
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Our Research Speed!!!

Figure: FAST!
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Summary

Summary

A perfect polynomial equals the sum of its divisors.
As Canaday thought there are no odd perfect polynomials up to
degree 200.
My program is relatively fast and finds the perfect polynomials.

Future Plans
To check higher degrees
Show odd perfect polynomials mod 2 have at least 6 factors
Work on a paper
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Summary

For Further Information

E.F. Canaday
The Sum of The Divisors of a Polynomial.
Duke Mathematical Journal, 8(4):721–737, 1941

L. Gallardo. and O. Rahavandrainy.
Odd Perfect Polynomials over F2
Journal de Théeorie des Nombres de Bordeaux, 19(1):165–174,
2007.

L. Gallardo. and O. Rahavandrainy.
There is no odd perfect polynomial over F2 with four prime factors
Portugaliae Mathematica, 66(2):131–145, 2009.
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Summary

Thank You!
(Any Questions?)
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