Playing with Triangular Numbers

Enrique Treviño

Chico State Colloquium
December 12, 2018

Coauthors

Dipika Subramaniam

Coauthors

Paul Pollack

Triangular Numbers

What are triangular numbers?

1st

2nd

3rd

4th

Triangular Numbers

The n-th triangular number, Δ_{n} is $\frac{n(n+1)}{2}$

Classic proof:

$$
\begin{aligned}
\Delta_{n} & =1+2+\cdots+n \\
\Delta_{n} & =n+(n-1)+\cdots+1 \\
2 \Delta_{n} & =(n+1)+(n+1)+\cdots+(n+1) \\
2 \Delta_{n} & =n(n+1) \\
\Delta_{n} & =\frac{n(n+1)}{2}
\end{aligned}
$$

Combinatorial Proof:

$$
\sum_{i=1}^{n} i=\sum_{i=1}^{n} \sum_{j=0}^{i-1} 1=\binom{n+1}{2}
$$

Probabilistic Proof

Let X be the sum of two uniformly-distributed n-sided dice.

$$
\mathbb{P}[X=k]= \begin{cases}\frac{(k-1)}{n^{2}}, & 2 \leq k \leq n+1 \\ \frac{n-i+1}{n^{2}}, & k=n+i \text { with } 2 \leq i \leq n\end{cases}
$$

Since $2 \leq X \leq 2 n$, then

$$
\begin{aligned}
1 & =\sum_{k=2}^{2 n} \mathbb{P}[X=k]=\sum_{k=2}^{n+1} \frac{k-1}{n^{2}}+\sum_{i=2}^{n} \frac{n-i+1}{n^{2}} \\
1 & =\left(\frac{1}{n^{2}}+\frac{2}{n^{2}}+\cdots+\frac{n}{n^{2}}\right)+\left(\frac{n-1}{n^{2}}+\frac{n-2}{n^{2}}+\cdots+\frac{1}{n^{2}}\right) \\
n^{2} & =(1+2+\cdots+n)+(1+2+\cdots+(n-1)) \\
n^{2} & =2(1+2+\cdots+n)-n .
\end{aligned}
$$

Playing with Triangular Numbers

$$
1+3+6=10
$$

McMullen, inspired by this, asked himself:

- For which k can we find k consecutive triangular numbers that add up to be a triangular number?
- Can we find the solutions?

McMullen showed there are infinitely many solutions for $k=2,3,5$, but no solutions for $k=4$.

Example

$k=4$ case

Elementary manipulations show that the sum of the k-consecutive triangular numbers starting at Δ_{n} is Δ_{m} whenever

$$
(2 m+1)^{2}-k(2 n+k)^{2}=\frac{(k-1)\left(k^{2}+k-3\right)}{3}
$$

When $k=4$ we get

$$
(2 m+1-4 n-8)(2 m+1+4 n+8)=17
$$

From which

$$
(m, n)=(4,0),(4,-4),(-5,0), \text { and }(-5,-4)
$$

Square k

> Theorem
> Let $k>4$ be a square. Then there exist k consecutive triangular numbers that add up to make a bigger triangular number.

Useful Factorization

Let $k=a^{2}$.
Then

$$
(2 m+1)^{2}-a^{2}\left(2 n+a^{2}\right)^{2}=\frac{a^{6}-4 a^{2}+3}{3}
$$

$\left(2 m+1+2 n a+a^{3}\right)\left(2 m+1+2 n a+a^{3}\right)=\frac{(a+1)(a-1)\left(a^{4}+a^{2}-3\right)}{3}$

k an even square

$$
\left(2 m+1-2 n a-a^{3}\right)\left(2 m+1+2 n a+a^{3}\right)=\frac{a^{6}-4 a^{2}+3}{3}
$$

Solving

$$
\begin{aligned}
& 2 m+1-2 n a-a^{3}=1 \\
& 2 m+1+2 n a+a^{3}=\frac{a^{6}-4 a^{2}+3}{3}
\end{aligned}
$$

yields

$$
\begin{aligned}
m & =\frac{\left(a^{4}-4\right)\left(a^{2}\right)}{12} \\
n & =\frac{a\left(a^{4}-6 a-4\right)}{12}
\end{aligned}
$$

k an odd square

We'll consider three cases:

$$
\begin{array}{ll}
a \equiv 0 & (\bmod 3) \\
a \equiv 1 & (\bmod 3) \\
a \equiv 2 & (\bmod 3)
\end{array}
$$

$a \equiv 1 \bmod 3$ or $a \equiv 0 \bmod 3$

$\left(2 m+1+2 n a+a^{3}\right)\left(2 m+1+2 n a+a^{3}\right)=\frac{(a+1)(a-1)\left(a^{4}+a^{2}-3\right)}{3}$
Solving

$$
\begin{aligned}
& 2 m+1-2 n a-a^{3}=a+1 \\
& 2 m+1+2 n a+a^{3}=\frac{(a-1)\left(a^{4}+a^{2}-3\right)}{3}
\end{aligned}
$$

yields

$$
\begin{aligned}
& m=\frac{a^{2}(a-1)\left(a^{2}+1\right)}{12} \\
& n=\frac{(a+2)(a-3)\left(a^{2}+1\right)}{12}
\end{aligned}
$$

$a \equiv 2 \bmod 3$ or $a \equiv 0 \bmod 3$

$\left(2 m+1+2 n a+a^{3}\right)\left(2 m+1+2 n a+a^{3}\right)=\frac{(a+1)(a-1)\left(a^{4}+a^{2}-3\right)}{3}$
Solving

$$
\begin{aligned}
& 2 m+1-2 n a-a^{3}=a-1 \\
& 2 m+1+2 n a+a^{3}=\frac{(a+1)\left(a^{4}+a^{2}-3\right)}{3}
\end{aligned}
$$

yields

$$
\begin{aligned}
& m=\frac{a^{5}+a^{4}+a^{3}+a^{2}-12}{12} \\
& n=\frac{(a+3)(a-2)\left(a^{2}+1\right)}{12}
\end{aligned}
$$

$k=6$

Recall

$$
(2 m+1)^{2}-k(2 n+k)^{2}=\frac{(k-1)\left(k^{2}+k-3\right)}{3}
$$

When $k=6$:

$$
x^{2}-6 y^{2}=65
$$

Therefore $x^{2} \equiv 6 y^{2} \bmod 13$. But

$$
\left(\frac{6}{13}\right)=-1
$$

Therefore, there are no solutions for $k \equiv 6 \bmod 13$.

A sufficient condition for k

Lemma

Let $q>3$ be a prime number. Suppose that $k \in \mathbb{Z}$ is such that
(1) k is not a square modulo q,
(2) $q \| k^{2}+k-3$.

Then there are no k consecutive triangular numbers that add up to a triangular number.

Example:

If $k \equiv 45 \bmod 53$ and $k \not \equiv 2430 \bmod 53^{2}$. There are 52 residues modulo 53^{2} which satisfy these conditions.

Main Theorem

Theorem

Let $K(x)$ be the number of k 's less than x that have solutions. Then:

$$
\sqrt{x} \leq K(x) \ll \frac{x}{\sqrt{\log (x)}} .
$$

Finding q such that $q \| k^{2}+k-3$ and $(k / q)=-1$

If $q \neq 13, k^{2}+k-3 \equiv 0 \bmod q$ has two distinct solutions k_{1}, k_{2} whenever $(13 / q)=1$. We then have three possibilities
(1) Both k_{1}, k_{2} are squares modulo q.
(2) One of k_{1}, k_{2} is a square and the other one isn't.
(3) Neither k_{1}, k_{2} are squares modulo q.

A pair of important sets of primes

Let \mathcal{A} be the set of primes q for which we have k_{1}, k_{2} both nonsquares modulo q.

Let \mathcal{B} be the set of primes q for which exactly one of k_{1}, k_{2} is a square modulo q.

If $q \in \mathcal{A}$, then the proportion of residues modulo q^{2} one must avoid are

$$
2 \frac{q-1}{q^{2}}=\frac{2}{q}-\frac{2}{q^{2}}
$$

If $q \in \mathcal{B}$, then the proportion of residues modulo q^{2} one must avoid are

$$
\frac{q-1}{q^{2}}=\frac{1}{q}-\frac{1}{q^{2}}
$$

Quantifying the proportion of primes in \mathcal{A}, \mathcal{B}

Consider $f(x)=x^{4}+x^{2}-3$. Let's analyze how $f(x)$ might factor in \mathbb{Z}_{q}. There are several possibilities

- $(1,1,1,1)$
- $(1,1,2)$
- $(2,2)$
- 4

Primes in \mathcal{B} would split as $(1,1,2)$.
Primes in \mathcal{A} would be primes that are squares modulo 13 and that don't split as $(1,1,2)$ or $(1,1,1,1)$.

Chebotarev Density Theorem

Theorem

Suppose that $f(x) \in \mathbb{Z}[x]$ is monic and irreducible over \mathbb{Q}, with $\operatorname{deg} f(x)=n$. Let \mathbb{L} be the splitting field of $f(x)$ over \mathbb{Q}. Fix a partition $\left\langle k_{1}, \ldots, k_{r}\right\rangle$ of n (that is, a tuple of positive integers $k_{1} \geq k_{2} \geq \cdots \geq k_{r}$ with $\left.k_{1}+\cdots+k_{r}=n\right)$. Let δ be the proportion of elements of $\operatorname{Gal}(\mathbb{L} / \mathbb{Q})$ which, when viewed as permutations on the roots of $f(x)$, have cycle type $\left\langle k_{1}, \ldots, k_{r}\right\rangle$. For all but finitely many primes p, the polynomial $f(x)$ factors as a product of distinct monic irreducible polynomials modulo p, and δ is the proportion of primes for which these irreducibles have degrees k_{1}, \ldots, k_{r}.

Chebotarev in our problem

Consider $f(x)=x^{4}+x^{2}-3 . f$ is irreducible over \mathbb{Q}, let \mathbb{L} be the splitting field of f over \mathbb{Q}, then $\operatorname{Gal}(\mathbb{L} / \mathbb{Q})$ is isomorphic to

$$
\{(1),(1324),(12)(34),(1423),(34),(13)(24),(12),(14)(23)\}
$$

- 1 of the 8 elements decompose as ($1,1,1,1$)
- 3 of the 8 elements decompose as $(2,2)$
- 2 of the 8 elements decompose as $(1,1,2)$
- 2 of the 8 elements decompose as (4)

The proportion of primes $q \in \mathcal{B}$ is $2 / 8=1 / 4$.
The proportion of primes $q \in \mathcal{A}$ is $1 / 2-1 / 8-2 / 8=1 / 8$.

Idea of Proof

There are several residues modulo certain squares of primes that must be avoided for k to be able to yield solutions.
We then get the following upper bound heuristic:

$$
\begin{aligned}
K(x) & \ll x \prod_{\substack{q \leq x \\
q \in \mathcal{A}}}\left(1-\frac{2}{q}+\frac{2}{q^{2}}\right) \prod_{\substack{q \leq x \\
q \in \mathcal{B}}}\left(1-\frac{1}{q}+\frac{1}{q^{2}}\right) \\
& \ll x\left(\frac{1}{\left(\log ^{1 / 8} x\right)^{2}}\right)\left(\frac{1}{\log ^{1 / 4}(x)}\right) \\
& \ll \frac{x}{\sqrt{\log x}} .
\end{aligned}
$$

Non-Chebotarev (weaker) proof

One could avoid the use of Chebotarev to get that $K(x)=o(x)$. Namely, the primes in \mathcal{B} can be characterized as primes q satisfying

$$
\left(\frac{13}{q}\right)=1 \quad \& \quad\left(\frac{-3}{p}\right)=-1
$$

The primes in \mathcal{B} have proportion $1 / 4$.
Then

$$
K(x) \ll \frac{x}{(\log (x))^{1 / 4}} .
$$

Main Theorem

Theorem

Let $K(x)$ be the number of k 's less than x that have solutions. Then:

$$
\sqrt{x} \leq K(x) \ll \frac{x}{\sqrt{\log (x)}} .
$$

On the hunt for a lower bound

Our goal is solving

$$
(2 m+1)^{2}-k(2 n+k)^{2}=\frac{(k-1)\left(k^{2}+k-3\right)}{3} .
$$

Let p be a prime number satisfying:
(0) $p \equiv 7 \bmod 24$
(2) $p^{2}+p-3$ is not divisible by any prime q for which $p \bmod q$ is a nonsquare
(3) $\mathbb{Q}(\sqrt{p})$ has class number 1 .

Then there exist p consecutive triangular numbers that add up to a triangular number.

$k=127$

We want to solve

$$
(2 m+1)^{2}-127(2 n+127)^{2}=682626=2 \times 3 \times 7 \times 16253
$$

- $127 \equiv 1 \bmod 42$
- $541^{2} \equiv 127 \bmod 16253$
- $\mathbb{Q}(\sqrt{127})$ has class number 1 .

Let $q \in\{2,3,7,16253\}$. There exists $x_{q}+y_{q} \sqrt{127}$ with norm q.

- $x_{2}=2175, y_{2}=193$
- $x_{3}=293, y_{3}=26$
- $x_{7}=45, y_{7}=4$
- $x_{16253}=2325, y_{16253}=206$

Solution to $k=7$

$$
\begin{aligned}
& (45+4 \sqrt{127})(293+26 \sqrt{127})(2175+193 \sqrt{127})(2325+206 \sqrt{127}) \\
& =533462754763+47337164797 \sqrt{127}
\end{aligned}
$$

Let

$$
x=533462754763, \quad y=47337164797
$$

Then

$$
x^{2}-127 y^{2}=682626
$$

We want to solve $2 m+1=x$ and $2 n+127=y$.

$$
\begin{gathered}
m=266731377381, \quad n=23668582335 \\
\Delta_{n}+\Delta_{n+1}+\cdots+\Delta_{n+126}=\Delta_{m}
\end{gathered}
$$

Cohen-Lenstra Heuristics

Conjecture

Let \mathcal{P} be the set of prime numbers p satisfying
(1) $p \equiv 7 \bmod 24$
(2) $p^{2}+p-3$ is not divisible by any prime q for which $p \bmod q$ is a nonsquare
(3) $\mathbb{Q}(\sqrt{p})$ has class number 1 .

The proportion of such primes is 75.45%.
This suggests

$$
K(x) \gg \frac{x}{\log ^{3 / 2}(x)}
$$

Thank you!

