CORRIGENDUM TO "ON THE MAXIMUM NUMBER OF CONSECUTIVE INTEGERS ON WHICH A CHARACTER IS CONSTANT"

ENRIQUE TREVINO

Theorem 1 in [1] should be corrected to the following:
Theorem 1. If χ is any non-principal Dirichlet character to the prime modulus p which is constant on $(N, N+H]$, then

$$
H<\left\{\frac{\pi}{2} \sqrt{\frac{e}{3}}+o(1)\right\} p^{1 / 4} \log p
$$

where the o(1) terms depends only on p. Furthermore,

$$
H \leq \begin{cases}3.38 p^{1 / 4} \log p, & \text { for all odd } p \\ 1.55 p^{1 / 4} \log p, & \text { for } p \geq 10^{13}\end{cases}
$$

There are two differences:
(1) The explicit constant for all p is changed from 3.64 to 3.38 (an improvement).
(2) The bound $1.55 p^{1 / 4} \log p$ is proven for $p \geq 10^{13}$ instead of $p \geq 2.5 \cdot 10^{9}$.

To prove that $H(p) \leq 1.55 p^{1 / 4} \log p$, the only changes in the proof involve correcting Table 2 in [1]. To correct it, replace the first three rows of Table 2 of [1] with the following two rows:

w	h	p	w	h	p	w	h	p
8	36	$\left[10^{13}, 10^{13.36}\right]$	8	40	$\left[10^{13.36}, 10^{13.5}\right]$	8	41	$\left[10^{13.5}, 10^{14.4}\right]$
8	44	$\left[10^{14.4}, 10^{14.9}\right]$	9	45	$\left[10^{14.9}, 10^{16}\right]$	9	51	$\left[10^{16}, 10^{17}\right]$

TABLE 1. These two rows would replace the first three rows of Table 2 in [1]. The mistake in [1] stemmed from coding incorrectly the function $\gamma(p, w, h)$.

With respect to the error involving the bound for all p. In [1] we chose "large" h to circumvent the constraint $(h / 2)^{2 / 3} p^{1 / 3} \geq H$, however, this constraint is illusory. If H is larger, we can pick a $H^{\prime} \leq H$ such that $H^{\prime} \leq(h / 2)^{2 / 3} p^{1 / 3}$ and then use Proposition 1 on H^{\prime}. It turns out that the choices of h in [1] were not valid because there is a factor $g(x)$ in the calculation of $\gamma(p, w, h)$ which was miscoded and this factor can be negative when h is large with respect to p. But smaller h 's would avoid this problem and they come at no penalty because the constraint $(h / 2)^{2 / 3} p^{1 / 3} \geq H$ is irrelevant. We make the following changes to correct the proof and, in the process, get an improvement:

[^0](1) We use Brauer's inequality $H<\sqrt{2 p}+2$ for $p \leq 10^{6.1}$ as opposed to $p \leq 3 \times 10^{6}$ from [1]. In this narrower range it implies $H<3.38 p^{1 / 4} \log p$.
(2) For $p \in\left[10^{6.1}, 10^{7}\right]$ we choose $w=4$ and $h=9$. This choice of w, h satisfies all the constraints and $\gamma(p, w, h) \leq 3.38$.
(3) For $p \in\left[10^{7}, 10^{10}\right]$ we choose $w=5$ and $h=17$.
(4) For $p \in\left[10^{10}, 10^{13}\right]$ we choose $w=6$ and $h=28$.

We also have mistakes in Remark 2 and Remark 3 of [1]. In Remark 2 we try to prove that Norton's claims are correct, namely that for $p>e^{15}$, it is true that $H(p)<2.5 p^{1 / 4} \log p$. The proof once again makes the mistake of taking an h that does not satisfy the constraints. What we can prove is that $H(p)<3 p^{1 / 4} \log p$ for $p>e^{15}$. To correct the proof we make the following changes:
(1) Let $w=4, h=11$. Then in the range $p \in\left[e^{15}, 10^{7}\right]$ we have $\gamma(p, w, h)<3$.
(2) For $p \in\left[10^{7}, 10^{9}\right]$ we choose $w=5$ and $h=16$.
(3) For $p \in\left[10^{9}, 10^{13}\right]$ we choose $w=6$ and $h=28$.

For Remark 3, we should change the bound of $3 p^{1 / 4} \log p$ to $3.1 p^{1 / 4} \log p$ for the case of the maximum number of consecutive non-residues for which χ remains constant. The proof requires the following changes:
(1) We use Hudson's inequality: $H<p^{1 / 2}+2^{2 / 3} p^{1 / 3}+2^{1 / 3} p^{1 / 6}+1$ for $p \leq 10^{6.4}$ as opposed to $p \leq 2 \cdot 10^{6}$. With this change we get that $H(p)<3.1 p^{1 / 4} \log p$ for $p<10^{6.4}$.
(2) For $p \in\left[10^{6.4}, 10^{7}\right]$ we choose $w=5$ and $h=10$. Then $\gamma(p, w, h) \leq 3.1$.
(3) For $p \in\left[10^{7}, 10^{9}\right]$ we choose $w=5$ and $h=16$.
(4) For $p \in\left[10^{9}, 10^{13}\right]$ we choose $w=6$ and $h=36$.

References

1. Enrique Treviño, On the maximum number of consecutive integers on which a character is constant, Mosc. J. Comb. Number Theory 2 (2012), no. 1, 56-72. MR 2988388

Department of Mathematics and Computer Science, Lake Forest College, Lake Forest, Illinois 60045

E-mail address: trevino@lakeforest.edu

[^0]: 2010 Mathematics Subject Classification. Primary 11L40, 11Y60.
 Key words and phrases. Character Sums, Burgess inequality.

