In Facebook, if you average the average number of friends of everybody (which as of 2012, it was around 635 according to [2]), it is much bigger than the average number of friends of individual users (which was 190 as of 2012 according to [2]). In fact about 93% (see [2]) of people have less friends than the average number of friends their friends have. This sort of phenomenon happens in any network, not just on Facebook\(^1\).

Let’s set up the notation for our proof of this theorem. Let \(G \) be a finite graph with \(n \) vertices. For a vertex \(v \in G \), we say that \(u \in E(v) \) if \(u \) is a vertex of \(G \) adjacent to \(v \) (i.e., if \(u \) and \(v \) are “friends”). Let \(d(v) \) be the degree of \(v \).

The average number of “friends” is

\[
\frac{1}{n} \sum_{v \in G} d(v).
\]

The average of the average number of friends is

\[
\frac{1}{n} \sum_{v \in G} \frac{1}{d(v)} \sum_{u \in E(v)} d(u).
\]

We’re ready to state the theorem (and prove it)

Theorem 1.

\[
\frac{1}{n} \sum_{v \in G} \frac{1}{d(v)} \sum_{u \in E(v)} d(u) \geq \frac{1}{n} \sum_{v \in G} d(v).
\]

Proof. Consider

\[
A = \frac{1}{n} \sum_{v \in G} \frac{1}{d(v)} \sum_{u \in E(v)} d(u).
\]

By changing the order of summation we get

\[
\frac{1}{n} \sum_{u \in G} d(u) \sum_{v \in E(u)} \frac{1}{d(v)}.
\]

By making a change of variable we also get

\[
\frac{1}{n} \sum_{v \in G} \sum_{u \in E(v)} \frac{d(v)}{d(u)}.
\]

\(^1\)For example, on Twitter, the percentage of users with less friends than the average number of friends their friends have is over 98\% according to [1] (as of 2009).
Therefore
\[\frac{1}{n} \sum_{v \in G} \frac{1}{d(v)} \sum_{u \in E(v)} d(u) = \frac{1}{n} \sum_{v \in G} \sum_{u \in E(v)} \frac{d(v)}{d(u)}. \]

Since they are equal, their average is also A. Therefore, using that $x + \frac{1}{x} \geq 2$ for all $x > 0$ (the AM-GM inequality), we get
\[
A = \frac{1}{n} \sum_{v \in G} \sum_{u \in E(v)} \frac{d(v)}{d(u)} + \frac{d(u)}{d(v)} \geq \frac{1}{n} \sum_{v \in G} \sum_{u \in E(v)} 1 \geq \frac{1}{n} \sum_{v \in G} d(v).
\]

Which is what we wanted to prove.

\[\square\]

References
