Friends Paradox

March 18, 2016

In Facebook, if you average the average number of friends of everybody (which as of 2012, it was around 635 according to [2]), it is much bigger than the average number of friends of individual users (which was 190 as of 2012 according to [2]). In fact about 93% (see [2]) of people have less friends than the average number of friends their friends have. This sort of phenomenon happens in any network, not just on Facebook ${ }^{1}$.

Let's set up the notation for our proof of this theorem. Let G be a finite graph with n vertices. For a vertex $v \in G$, we say that $u \in E(v)$ if u is a vertex of G adjacent to v (i.e., if u and v are "friends"). Let $d(v)$ be the degree of v.

The average number of "friends" is

$$
\frac{1}{n} \sum_{v \in G} d(v)
$$

The average of the average number of friends is

$$
\frac{1}{n} \sum_{v \in G} \frac{1}{d(v)} \sum_{u \in E(v)} d(u) .
$$

We're ready to state the theorem (and prove it)

Theorem 1.

$$
\frac{1}{n} \sum_{v \in G} \frac{1}{d(v)} \sum_{u \in E(v)} d(u) \geq \frac{1}{n} \sum_{v \in G} d(v) .
$$

Proof. Consider

$$
A=\frac{1}{n} \sum_{v \in G} \frac{1}{d(v)} \sum_{u \in E(v)} d(u) .
$$

By changing the order of summation we get

$$
\frac{1}{n} \sum_{u \in G} d(u) \sum_{v \in E(u)} \frac{1}{d(v)} .
$$

By making a change of variable we also get

$$
\frac{1}{n} \sum_{v \in G} \sum_{u \in E(v)} \frac{d(v)}{d(u)} .
$$

[^0]Therefore

$$
\frac{1}{n} \sum_{v \in G} \frac{1}{d(v)} \sum_{u \in E(v)} d(u)=\frac{1}{n} \sum_{v \in G} \sum_{u \in E(v)} \frac{d(v)}{d(u)} .
$$

Since they are equal, their average is also A. Therefore, using that $x+\frac{1}{x} \geq 2$ for all $x>0$ (the AM-GM inequality), we get

$$
\begin{aligned}
A & =\frac{1}{n} \sum_{v \in G} \sum_{u \in E(v)} \frac{\frac{d(v)}{d(u)}+\frac{d(u)}{d(v)}}{2} \\
& \geq \frac{1}{n} \sum_{v \in G} \sum_{u \in E(v)} 1 \\
& \geq \frac{1}{n} \sum_{v \in G} d(v) .
\end{aligned}
$$

Which is what we wanted to prove.

References

[1] Nathan Oken Hodas, Farshad Kooti, and Kristina Lerman, Friendship paradox redux: Your friends are more interesting than you, CoRR abs/1304.3480 (2013).
[2] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow, The anatomy of the facebook social graph, CoRR abs/1111.4503 (2011).

[^0]: ${ }^{1}$ For example, on Twitter, the percentage of users with less friends than the average number of friends their friends have is over 98% according to [1] (as of 2009).

