Practice Exam Math 230

- 1. True or False (Just answer true or false, you don't need to explain your answer):
 - (a) Every positive integer is either prime or composite.
 - (b) Every integer is positive or negative.
 - (c) If x is an integer and x is prime and x > 2 then x is odd.
 - (d) Let x and y be integers such that $x^2 = y^2$, then x = y.
 - (e) $\{2\} \in 2^{\mathbb{Z}}$.
 - (f) Let A be a set, then $\emptyset \subseteq A$.
 - (g) $2 \in \{\{1\}, \{2\}\}\}.$
 - (h) If you pick a guinea pig up by its tail, then its eyes will pop out.
 - (i) If p and q are prime then p + q is composite.
 - (j) There exists an even number n such that n + 1 is also even.
- 2. The following statement is false: "If x, y and z are integers and x > y, then xz > yz". Do the following:
 - (a) Find a counterexample.
 - (b) Modify the statement by adding an extra condition on z that will make the conclusion true.
- 3. Prove or disprove that the Boolean expressions $x \to \neg y$ and $\neg(x \to y)$ are logically equivalent.
- 4. Prove that the sum of three consecutive positive integers is a multiple of 3.
- 5. Let a be an integer. Prove that if $a \ge 3$, then $a^2 > 2a + 1$.
- 6. The call sign for a radio station in the United States is a list of three or four letters, such as WJHU or WJZ. The first letter must be a W or a K, and there is no restriction on the other letters. In how many ways can the call sign of the radio station be formed?
- 7. In how many ways can we arrange a standard deck of 52 cards so that all cards in a given suit appear contiguously.
- 8. Prove or disprove: $2^{A \cap B} = 2^A \cap 2^B$.
- 9. True or false (Just answer true or false, you don't need to explain your answer):
 - (a) $\forall x \in \mathbb{Z}, x^2 \ge x$.
 - (b) $\exists x \in \mathbb{Z}, x^3 = x.$
 - (c) $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x \leq x.$
 - (d) $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, x \leq y.$
- 10. Suppose A and B are finite sets. Given that $|A| = 10, |A \cup B| = 15$, and $|A \cap B| = 3$, determine |B|.
- 11. Let A, B, C be sets. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.