Practice Exam 2

- 1. Prove that the following identities are true for all positive integers n:
 - (a) $1 + 5 + 9 + \ldots + (4n 3) = 2n^2 n$.
 - (b) $1 + 10 + 10^2 + \ldots + 10^n = \frac{10^{(n+1)} 1}{9}$.
- 2. Prove that the following inequalities are true:
 - (a) $e^n > n+7$, for $n \ge 3$.
 - (b) $n^2 \ge 6n + 2$, for $n \ge 7$.
- 3. Prove by induction that the sum of the angles of a convex *n*-gon (with $n \ge 3$) is 180(n-2) degrees.
- 4. For each of the following statements, write the first sentences of a proof by contradiction (you should not attempt to complete the proofs).
 - (a) $\sqrt{2}$ is an irrational number.
 - (b) If a > 1, then $a^2 > \sqrt{a}$.
 - (c) For all real numbers $x, x^2 \ge 0$.
 - (d) If n is a multiple of 4 then n + 2 is not a multiple of 4.
- 5. Prove that if x is a real number then $x^2 \ge 0$ (you may use that for a, b, c real numbers, if a > b then (ac > bc if c > 0 and ac < bc if c < 0)).
- 6. For each of the following relations defined on the set $\{1, 2, 3\}$ determine whether they are reflexive, irreflexive, symmetric, antisymmetric and/or transitive.
 - (a) $R = \{(1,1), (2,2), (3,3)\}.$
 - (b) $R = \{(1,1), (2,2), (3,3), (1,2)\}.$
 - (c) $R = \{(1,1), (2,2), (1,2), (2,1)\}.$
 - (d) $R = \{(1,2), (1,3), (2,3), (2,2)\}.$
- 7. Let R be the "is similar" relation on triangles, i.e. if A and B are triangles, then ARB if and only if the angles of triangle A are the same as the angles of triangle B.
- 8. For each equivalence relation below, find the requested equivalence class.
 - (a) $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$ on $\{1,2,3,4\}$. Find [1].
 - (b) $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$ on $\{1,2,3,4\}$. Find [4].
 - (c) R is has-the-same-parents-as on the set of human beings. Find [you].
 - (d) R is has-the-same-tens-digits as on the set $\{x \in \mathbb{Z} : 100 < x < 200\}$. Find [123].