Practice Exam 2

1. Prove that the following identities are true for all positive integers n :
(a) $1+5+9+\ldots+(4 n-3)=2 n^{2}-n$.
(b) $1+10+10^{2}+\ldots+10^{n}=\frac{10^{(n+1)}-1}{9}$.
2. Prove that the following inequalities are true:
(a) $e^{n}>n+7$, for $n \geq 3$.
(b) $n^{2} \geq 6 n+2$, for $n \geq 7$.
3. Prove by induction that the sum of the angles of a convex n-gon (with $n \geq 3$) is $180(n-2)$ degrees.
4. For each of the following statements, write the first sentences of a proof by contradiction (you should not attempt to complete the proofs).
(a) $\sqrt{2}$ is an irrational number.
(b) If $a>1$, then $a^{2}>\sqrt{a}$.
(c) For all real numbers $x, x^{2} \geq 0$.
(d) If n is a multiple of 4 then $n+2$ is not a multiple of 4 .
5. Prove that if x is a real number then $x^{2} \geq 0$ (you may use that for a, b, c real numbers, if $a>b$ then ($a c>b c$ if $c>0$ and $a c<b c$ if $c<0)$).

6 . For each of the following relations defined on the set $\{1,2,3\}$ determine whether they are reflexive, irreflexive, symmetric, antisymmetric and/or transitive.
(a) $R=\{(1,1),(2,2),(3,3)\}$.
(b) $R=\{(1,1),(2,2),(3,3),(1,2)\}$.
(c) $R=\{(1,1),(2,2),(1,2),(2,1)\}$.
(d) $R=\{(1,2),(1,3),(2,3),(2,2)\}$.
7. Let R be the"is similar" relation on triangles, i.e. if A and B are triangles, then $A R B$ if and only if the angles of triangle A are the same as the angles of triangle B.
8. For each equivalence relation below, find the requested equivalence class.
(a) $R=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$ on $\{1,2,3,4\}$. Find [1].
(b) $R=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$ on $\{1,2,3,4\}$. Find [4].
(c) R is has-the-same-parents-as on the set of human beings. Find [you].
(d) R is has-the-same-tens-digits as on the set $\{x \in \mathbb{Z}: 100<x<200\}$. Find [123].

