Isomorphisms Worksheet

Enrique Treviño

October 21, 2014

In this series of exercises we will classify all groups of order $2 p$, where p is an odd prime.

1. Assume G is a group of order $2 p$, where p is an odd prime. If $a \in G$, show that a must have order 1 , $2, p$, or $2 p$.
2. Suppose that G has an element of order $2 p$. Prove that G isomorphic to $\mathbb{Z}_{2 p}$.

From now on, suppose G is not cyclic:
3. Show that G must contain an element of order p. Hint: Assume that G does not contain an element of order p.
4. Let z be an element of order p. Let $P=\langle z\rangle$. Show that if $g \notin P$, then g has order 2 .
5. Let P be a subgroup of G with order p and $y \in G$ has order 2 . Show that $y P=P y$.

From now on, let $z \in G$ be an element of order p and $y \in G$ be an element of order 2 .
6. Let $P=\langle z\rangle$ is a subgroup of order p generated by z. If y is an element of order 2 , then $y z=z^{p-1} y=$ $z^{-1} y$.
7. Prove that G is not abelian.
8. Show that we can list the elements of G as $\left\{y^{i} z^{j} \mid 0 \leq i \leq 1,0 \leq j \leq p-1\right\}$.
9. Prove that G is isomorphic to the dihedral group D_{p}.

