Math 340: Geometry

Homework 1

1. Exercises 2.1.2, 2.1.3, 2.1.4 and 2.1.5.
2. Exercises 2.2.1, 2.2.2 and 2.2.3.
3. Exercise 2.3.3.
4. Exercises 2.5.2 and 2.5.3.
5. Exercises 2.5.4 and 2.5.5.
6. Let $A B C$ be a right triangle with $\angle A=90^{\circ}$. Let Y and Z be the midpoints of segments $A C$ and $A B$, respectively. Let $B Y=\sqrt{73}$ and $C Z=2 \sqrt{13}$. Find the length of $B C$.
7. Let $A B C D E$ be a (not necessarily regular) five point star. Find the sum (with proof)

$$
\angle A+\angle B+\angle C+\angle D+\angle E .
$$

8. Prove or disprove: For triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ we know that $A B=A^{\prime} B^{\prime}, A C=A^{\prime} C^{\prime}$ and $\angle B C A=\angle B^{\prime} C^{\prime} A^{\prime}$. Then they must be congruent.

BONUS What is the least possible area of a triangle $\triangle A B C$ with altitudes satisfying $h_{a} \geq 3, h_{b} \geq 4, h_{c} \geq 5$? Note: h_{a} is the height of the triangle when $B C$ is the base, h_{b} is the height when $A C$ is the base, and h_{c} is the height when $A B$ is the base.

