Math 340: Geometry

Homework 4

1. Exercises 3.3.2, 3.3.3, 3.3.4, and 3.3.5. Note that the exercises have some typos in the textbook. Here are the corrections: In 3.3.2, one of the lines should read:

$$
|O P|=x_{1}, \quad|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}}, \quad|O Q|=\sqrt{x_{2}^{2}+y_{2}^{2}}
$$

In 3.3.3 the equation should read:

$$
(|O P|+|P Q|)^{2}-|O Q|^{2}=2 x_{1}\left(\sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}}-\left(x_{2}-x_{1}\right)\right)
$$

2. Exercise 4.3.1.
3. Exercises 4.3.2, 4.3.3, 4.3.4, and 4.3.5.
4. Exercises 4.4.3 and 4.4.4. The equation in 4.4 .4 should read as

$$
\left(\mathbf{w}-\frac{\mathbf{u}+\mathbf{v}}{2}\right) \cdot(\mathbf{u}-\mathbf{v})=0
$$

5. Exercises 4.5.2 and 4.5.3.
6. Exercises 4.6.2, 4.6.3, and 4.6.4.
7. Let P be a point inside square $A B C D$ such that $P A=2, P B=3, P C=4$. Compute $P D$.
8. Let $A B C D$ be a rhombus with a point P on the side $B C$ and Q on the side $C D$ such that $B P=C Q$. Prove that the centroid of the triangle $A P Q$ lies on the segment $B D$.

BONUS Let $\triangle A B C$ be an equilateral triangle. Suppose P is a point inside the triangle satisfying that $A P=$ $3, B P=4$, and $C P=5$. Find the length of the side of equilateral triangle, i.e., find $A B$.

