Math 340: Geometry Worksheet 1: Coordinate Geometry

Figure 1: $\triangle ABC$ with C at the origin and A at the x-axis

- 1. Let $\triangle ABC$ be a triangle with AB = c, AC = b, BC = a, and $\angle ACB = \theta$. Find the coordinates (in terms of a, b, θ) of A and B in Figure 1.
- 2. Let $\triangle ABC$ be a triangle satisfying AB=c, BC=a, AC=b, and $\angle ACB=\theta$. Prove the Law of Cosines, i.e., that

$$c^2 = a^2 + b^2 - 2ab\cos(\theta).$$

Hint: Use the coordinates from question 1.

- 3. Show that the altitudes of a triangle concur. Hint: Consider the triangle from Figure 1. Let D beon AC such that $BD \perp AC$. Let E be on AB such that $CE \perp AB$. Let E be the intersection of E and E. Find the coordinates of E and E and E are triangle from Figure 1.
- 4. Find the coordinates (in terms of a, b, θ) of the orthocenter H of the triangle in Figure 1. Hint: It's the same as H in the previous question.
- 5. Find the coordinates (in terms of a, b, θ) of the centroid G of the triangle in Figure 1.
- 6. Find the coordinates (in terms of a, b, θ) of the circumcenter O of the triangle in Figure 1. Hint: Use that O is the intersection of the perpendicular line bisectors of the sides. You need only intersect two of them. The perpendicular line bisector of AC has a very simple formula.
- 7. Using the coordinates of H, G, O from previous questions, find the slopes of OG and OH. Prove that they are equal and conclude that O, G, H are aligned.
- 8. Prove that the length of OH is three times the length of OG to conclude that O, G, H are aligned in that order with a ratio of 1 : 2. This is the celebrated theorem known as the Euler line.