Homework 2: Math 311: Intro to Real Analysis

Problem 1. (Exercise 2.3.1 and 2.3.2)
(a) Find a value of n so that any partial sum with at least n terms is within $1 / 100$ of the target value $\pi / 4$ of the series $1-1 / 3+1 / 5-1 / 7+\cdots$. Justify your answer.
(b) Find a value of n so that any partial sum with at least n terms is within $1 / 1000$ of the target value of the series expansion of $\arctan (1 / 2)$. Justify your answer.
Problem 2. (Exercise 2.3.4 and 2.3.5)
(a) Prove that

$$
\frac{\pi}{8}=\frac{1}{1 \cdot 3}+\frac{1}{5 \cdot 7}+\frac{1}{9 \cdot 11}+\cdots
$$

Hint: Use that $\pi / 4=1-1 / 3+1 / 5-1 / 7+\cdots$.
(b) Prove Machin's identity:

$$
\frac{\pi}{4}=4 \arctan \left(\frac{1}{5}\right)-\arctan \left(\frac{1}{239}\right)
$$

Problem 3. (Exercise 2.3.11) It may appear that Newton's binomial series can only be used to find approximations to square roots of numbers between 0 and 2 , but once you can do this, you can find a series for the square root of any positive number. If $x>2$, then find an integer n so that $n^{2} \leq x<(n+1)^{2}$. It follows that $\sqrt{x}=n \sqrt{x / n^{2}}$ and $1 \leq x / n^{2}<2$.
(a) Use this idea to find a series expansion for $\sqrt{13}$.
(b) Find a value of n so that any partial sum with at least n terms is within 0.001 of the target value $\sqrt{13}$. Justify your answer.

Problem 4. (Exercise 2.4.1 and 2.4.2)
(a) Give an example of a series that diverges to ∞ but whose partial sums do not form an increasing sequence.
(b) Give an example of a series that does not diverge to ∞ but whose partial sums are increasing.

Problem 5. (Exercise 2.4.7)
(a) Express the follows series in terms of π and $\ln (2)$:

$$
1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\cdots
$$

(b) Check your result by evaluating the first 1000 terms of this series.

Problem 6. (Exercise 2.4.9) We've proved that

$$
\begin{equation*}
\gamma=\frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{m^{2}}-\frac{1}{3} \sum_{m=1}^{\infty} \frac{1}{m^{3}}+\frac{1}{4} \sum_{m=1}^{\infty} \frac{1}{m^{4}}-\frac{1}{5} \sum_{m=1}^{\infty} \frac{1}{m^{5}}+\cdots \tag{1}
\end{equation*}
$$

The zeta (greek letter ζ) function is defined as

$$
\zeta(k)=\sum_{m=1}^{\infty} \frac{1}{m^{k}}
$$

Euler famously proved that $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90$, and in general, that if k is even, then $\zeta(k)$ is a rational times π^{k}. There is no simple formula when k is odd, but these values of $\zeta(k)$ are also known to very high accuracy.
(a) What happens to $\zeta(k)$ as k increases?
(b) Assuming that we have arbitrarily good accuracy on the values of $\zeta(k)$, how many terms of the series (1) are needed to calculate γ to within 10^{-6} ?

Problem 7. (Exercise 2.4.10) We know that the harmonic series does not converge. A result that is often seen as surprising is that if we eliminate those integers that contain the digit 9 , the partial sums of the resulting series do stay bounded. Prove that the partial sums of the reciprocals of the integers that do not contain any 9 's in their decimal representation are bounded.

Figure 1: Funny cartoon related to problem 7.
Problem 8. (Exercise 2.4.16 and 2.4.17)
(a) Use the fact that

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}-\ln (n)-\gamma>-\frac{1}{2} \sum_{m=n}^{\infty} \frac{1}{m^{2}}
$$

to find a lower bound for $1+1 / 2+1 / 3+\cdots+1 /(n-1)$ in the form $\ln (n)+\gamma-R(n)$, where $R(n)$ is a rational function of n (a ratio of polynomials).
(b) Show that $\ln (n)+\gamma-R(n)>\ln (n-1)+\gamma$.
(c) Use (a) and (b) to find the precise smallest integer n such that

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}>100
$$

Show the work that leads to your answer.

