Homework 3 Math 311: Introduction to Real Analysis

September 19, 2017

Problem 1. (Exercise 2.6.2 and 2.6.3)

(a) Find a power series in x that would imply that

$$
1-1+1-1+\cdots=\frac{4}{7}
$$

when x is set equal to 1 .
(b) Given any nonzero integers m and n, find a power series in x that would imply that

$$
1-1+1-1+\cdots=\frac{m}{n}
$$

when x is set equal to 1 .
Problem 2. (Exercise 3.1.2 (a,b,d)) Find the derivatives (where they exist) of the following functions. The function denoted by $\lfloor x\rfloor$ sends x to the greatest integer less than or equal to x. For example $\lfloor 3.1\rfloor=3,\lfloor 2\rfloor=2,\lfloor 2.7\rfloor=2,\lfloor-3.1\rfloor=-4$.
(a) $f(x)=x|x|$, for $x \in \mathbb{R}$.
(b) $f(x)=\sqrt{|x|}$, for $x \in \mathbb{R}$.
(d) $f(x)=(x-\lfloor x\rfloor) \sin ^{2}(\pi x)$, for $x \in \mathbb{R}$.

Problem 3. (Exercise 3.1.5) Show that the function given by

$$
f(x)= \begin{cases}x^{2}\left|\cos \left(\frac{\pi}{x}\right)\right|, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

is not differentiable at $x_{n}=\frac{2}{2 n+1}$, for n an integer, but is differentiable at 0 .
Problem 4. (Exercise 3.1.7) Let $f(x)=x^{2}, f^{\prime}(a)=2 a$. Let $E(x, a)$ be defined as

$$
E(x, a)=f^{\prime}(a)-\frac{f(x)-f(a)}{x-a}
$$

(a) Find the error $E(x, a)$ in terms of x and a.
(b) How close must x be to a if $|E(x, a)|$ is to be less than 0.01 ?
(c) How close must x be to a if $|E(x, a)|$ is to be less than 0.0001 ?

Problem 5. (Exercise 3.1.10) Let $f(x)=\sin (x)$.
(a) Find the error $E(x, \pi / 2)$ as a function of x.
(b) Graph $E(x, \pi / 2)$.
(c) Find a δ to respond with if you are given $\epsilon=0.1$.
(d) Find a δ to respond with if you are given $\epsilon=0.0001$.
(e) Find a δ to respond with if you are given $\epsilon=10^{-100}$.

Problem 6. (Exercise 3.1.11) Use the definition of differentiability to prove that $f(x)=|x|$ is not differentiable at $x=0$, by finding an ϵ for which there is no δ response. Explain your answer.

Problem 7. (Exercise 3.1.12)
(a) Graph the function $f(x)=x \sin \left(\frac{1}{x}\right)$ (with $f(0)=0$) for $-2 \leq x \leq 2$.
(b) Prove that $f(x)$ is not differentiable at $x=0$, by finding an ϵ for which there is no δ response. Explain your answer.

Problem 8. (Exercise 3.2.1) Where does Cauchy's proof of the mean value theorem break down if we try to apply it to the function defined by $f(x)=x \sin (1 / x)(f(0)=0)$ over the interval $[0,1]$. Note: The mean value theorem does apply to this function, but Cauchy's approach cannot be used to establish this fact.

