Homework 4 Math 311: Introduction to Real Analysis

October 5, 2017

Problem 1. (Exercise 3.3.1) Prove that the function defined by

$$
f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is not continuous at $x=0$ by finding an ϵ for which there is no reply.
Problem 2. (Exercise 3.3.6) At what values of x is the function f continuous? Justify your answer.

$$
f(x)= \begin{cases}x & \text { if } x \text { is irrational or } x=0 \\ \frac{q x}{q+1} & \text { if } x=\frac{p}{q} \text { where } p \text { and } q \text { are relatively prime integers with } q>0 .\end{cases}
$$

Problem 3. (Exercise 3.3.8) Let f be a continuous function from $[0,1]$ to $[0,1]$. Show that there must be an x in $[0,1]$ for which $f(x)=x$.
Problem 4. (Exercise 3.3.15) Let

$$
f(x)=\lfloor x\rfloor+(x-\lfloor x\rfloor)^{\lfloor x\rfloor},
$$

for $x \geq 1 / 2$.
(a) Show that f is continuous on any $a \geq 1 / 2$.
(b) Show that f is strictly increasing on $[1, \infty)$.

Problem 5. (Exercise 3.3.28) Consider the function that takes the tenths digit in the decimal expansion ${ }^{1}$ of x and replaces it with a 1. For example $f(2.57)=2.17, f(3)=3.1, f(\pi)=3.14159 \ldots=\pi$.
(a) Where is this function continuous? Justify your answer.
(b) Where is this function discontinuous? Justify your answer.

Problem 6. (Exercise 3.4.6) Find the greatest lower bound (infimum) and the least upper bound (supremum) of the following sets.
(a) the interval $(0,3)$.
(b) $\{1,1 / 2,1 / 4,1 / 8, \ldots\}$.
(c) $\{1,1+1 / 2,1+1 / 2+1 / 4,1+1 / 2+1 / 4+1 / 8, \ldots\}$.
(e) $\{0.2,0.22,0.222,0.2222, \ldots\}$.

[^0]Problem 7. (Exercise 3.4.6) Find the greatest lower bound (infimum) and the least upper bound (supremum) of the following sets.
(i) $\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{N}\right\}$.
(j) $\{\sqrt{n}-\lfloor\sqrt{n}\rfloor \mid n \in \mathbb{N}\}$.
(k) $\left\{x \mid x^{2}+x+1>0\right\}$.
(l) $\left\{\left.x+\frac{1}{x} \right\rvert\, x>0\right\}$.

Problem 8. (Exercise 3.4.11) Prove that if "every set with an upper bound has a least upper bound," then the nested interval principle holds.

[^0]: ${ }^{1}$ The decimal expansion of a number is not unique since $3=2.999 \cdots$. In this question, we assume that you don't allow infinite 9's at the end in your decimal expansion. With that choice, the decimal expansion becomes unique and the function is well-defined.

