Homework 5 Math 311: Introduction to Real Analysis

October 30, 2017

Problem 1. (Exercise 3.4.1) Give an example of a function that exists and is bounded for all x in the interval $[0,1]$ but which never achieves either its least upper bound or its greatest lower bound over this interval.
Problem 2. (Exercise 3.4.7) Prove that for any set S, the negative of the supremum of $-S=\{-s \mid s \in S\}$ is a lower bound for S and that there's no larger lower bound (i.e., that it is the infimum).
Problem 3. (Exercise 3.4.12 and Exercise 3.4.13)
(a) Use the existence of a least upper bound for any bounded set to prove that if $g^{\prime}(x)>0$ for all $x \in[a, b]$, then g is increasing over $[a, b]\left(a \leq x_{1}<x_{2} \leq b\right.$ implies that $\left.g\left(x_{1}\right)<g\left(x_{2}\right)\right)$.
(b) Prove that if $f^{\prime}(x) \geq 0$ for all $x \in[a, b]$ and if $a \leq x_{1}<x_{2} \leq b$, then $f\left(x_{1}\right) \leq f\left(x_{2}\right)$.

Problem 4. (Exercise 3.4.22) Let $P(x)$ be any polynomial of degree at least 2, all of whose roots are real and distinct. Prove that all of the roots of $P^{\prime}(x)$ must be real.
Problem 5. (Exercise 3.4.28) Let f be differentiable on $[a, b]$ such that $f(a)=0=f(b)$ and $f^{\prime}(a)>$ $0, f^{\prime}(b)>0$. Prove that there is at least one $c \in(a, b)$ for which $f(c)=0$ and $f^{\prime}(c) \leq 0$.
Problem 6. (Exercise 3.5.4) Show that each of the following equations has exactly one real root.
(a) $x^{13}+7 x^{3}-5=0$
(b) $3^{x}+4^{x}=5^{x}$.

Problem 7. (Exercise 3.5.7 and 3.5.8) In the following two evaluations explain what is wrong with the application of L'Hospital's rule:
(a) Using L'Hospital's rule we get the following limit evaluation:

$$
\lim _{x \rightarrow 0} \frac{3 x^{2}-1}{x-1}=\lim _{x \rightarrow 0} \frac{6 x}{1}=0
$$

However, the limit is actually 1 . How was L'Hospital misused?
(b) Let $f(x)=x^{2} \sin (1 / x)$ and $F(x)=x$. Each of these functions approaches 0 as x approaches 0 , so by L'Hospital's rule

$$
\lim _{x \rightarrow 0} \frac{f(x)}{F(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{F^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{2 x \sin (1 / x)-\cos (1 / x)}{1}
$$

which does not exist. However, the limit of $f(x) / F(x)$ as $x \rightarrow 0$ is 0 . What went wrong?
Problem 8. (Exercise 3.5.16) Let $f(x)=x^{1 / x}$ for $x>0$.
(a) Prove

$$
\lim _{x \rightarrow \infty} x^{1 / x}=1
$$

Hint: Use L'Hospital to calculate $\lim _{x \rightarrow \infty} \ln \left(x^{1 / x}\right)$.
(b) What is the maximum of $f(x)$?

