Homework 6 Math 311: Introduction to Real Analysis

October 31, 2017

Problem 1. (Exercise 3.5.3) For $x>-1, x \neq 0$, show that

$$
\begin{array}{ll}
(1+x)^{\alpha}>1+\alpha x & \text { if } \alpha>1 \text { or } \alpha<0 \\
(1+x)^{\alpha}<1+\alpha x & \text { if } 0<\alpha<1
\end{array}
$$

Problem 2. (Exercise 3.5.17) Let f and g be functions with continuous second derivatives on $[0,1]$ such that $g^{\prime}(x) \neq 0$ for $x \in(0,1)$ and $f^{\prime}(0) g^{\prime \prime}(0)-f^{\prime \prime}(0) g^{\prime}(0) \neq 0$. Define a function θ for $x \in(0,1)$ so that $\theta(x)$ is one of the values that satisfies the generalized mean value theorem,

$$
\frac{f(x)-f(0)}{g(x)-g(0)}=\frac{f^{\prime}(\theta(x))}{g^{\prime}(\theta(x))}
$$

Show that

$$
\lim _{x \rightarrow 0^{+}} \frac{\theta(x)}{x}=\frac{1}{2}
$$

Problem 3. (Exercise 3.5.19) Suppose f is differentiable on $[a, b]$. Define g in terms of f as follows:

$$
g(x)= \begin{cases}f^{\prime}(a), & x=a \\ \frac{f(2 x-a)-f(a)}{2 x-2 a}, & a<x \leq \frac{a+b}{2} \\ \frac{f(b)-f(2 x-b)}{2 b-2 x}, & \frac{a+b}{2} \leq x<b \\ f^{\prime}(b), & x=b\end{cases}
$$

Prove g is continuous.
Problem 4. (Exercise 4.1.1) Consider the series

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

(a) How many terms for we need to take to be within $\epsilon=.0001$ of the target value 2 ?
(b) How many terms for we need to take to be within $\epsilon=10^{-1000000}$ of the target value 2 ?

Problem 5. (Exercise 4.1.4) Consider the series

$$
1+\sum_{k=1}^{n} \frac{k!}{100^{k}}
$$

(a) Evaluate the partial sums for the multiples of 10 up to $n=400$.
(b) Describe and discuss what you see happening.

Problem 6. (Exercise 4.1.13) Calculate the partial sums

$$
S_{n}=\sum_{k=2}^{n} \frac{\sin (k / 100)}{\ln (k)}
$$

up to at least $n=2000$.
(a) Describe what you see happening.
(b) Make a guess of the approximate value to which this series is converging.
(c) Explain the rationale behind your guess.

Problem 7. (Exercise 4.1.16) Let

$$
\epsilon_{n}= \begin{cases}1 & \text { for } 2^{2 k} \leq n<2^{2 k+1} \\ -1 & \text { for } 2^{2 k+1} \leq n<2^{2 k+2}\end{cases}
$$

where $k=0,1,2, \ldots$. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{\epsilon_{n}}{n}
$$

converges absolutely, converges conditionally, or diverges.
Problem 8. (Exercise 4.2 .4 ($\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$) For each of the following series, determine whether it converges absolutely, converges conditionally, or diverges.
(a)

$$
\frac{\arctan (1)}{2}+\frac{\arctan (2)}{2^{2}}+\cdots+\frac{\arctan (n)}{2^{n}}+\cdots
$$

(b)

$$
1+\frac{1}{4}+\frac{2^{2}}{4^{2}}+\cdots+\frac{n^{2}}{4^{n}}+\cdots
$$

(c)

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots
$$

(d)

$$
\frac{1}{1 \cdot 2}-\frac{1}{2 \cdot 3}+\cdots+(-1)^{n-1} \frac{1}{n(n+1)}+\cdots
$$

