Homework 7 Math 311: Introduction to Real Analysis

November 18, 2017

Problem 1. (Exercise 4.3.1 (a, c, e)) Determine the domain of convergence of the power series given below:
(a) $\sum_{n=1}^{\infty} n^{3} x^{n}$.
(c) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}} x^{n}$.
(e) $\sum_{n=1}^{\infty}\left(\frac{2+(-1)^{n}}{5+(-1)^{n+1}}\right)^{n} x^{n}$.

Problem 2. (Exercise 4.3.4 (a,c)) Suppose that the radius of convergence of $\sum_{n=0}^{\infty} a_{n} x^{n}$ is $R, 0<R<\infty$. Evaluate the radius of convergence of the following series:
(a) $\sum_{n=0}^{\infty} 2^{n} a_{n} x^{n}$.
(c) $\sum_{n=0}^{\infty} \frac{n^{n}}{n!} a_{n} x^{n}$.

Problem 3. (Exercise 4.3.9) Find the radius of convergence for

$$
\sum_{k=1}^{\infty} \frac{2^{k}}{\sqrt{k}} x^{k} .
$$

Problem 4. (Exercise 4.4.9) Prove that the following series converges:

$$
\sum_{k=2}^{\infty} \frac{\sin \left(\frac{k}{100}\right)}{\ln k} .
$$

Problem 5. (Exercise 5.1.2) Evaluate

$$
1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}+\frac{1}{128}-\frac{1}{256}+\cdots
$$

Problem 6. (Exercise 5.2.4) Consider the power series expansion for sine:

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{x^{2 k-1}}{(2 k-1)!}
$$

(a) Show that this series converges uniformly over the interval $[-\pi, \pi]$.
(b) How many terms must you take if the partial sum is to lie within $\epsilon=1 / 2$ (for all $x \in[-\pi, \pi]$)?
(c) What about for $\epsilon=1 / 10$.

Problem 7. Show using the definition of uniform continuity that $f(x)=\frac{x}{x+1}$ is uniformly continuous on the interval $[0,2]$.

Problem 8. Prove that $f(x)=\sqrt{x}$ is uniformly continuous on the interval $[0,1]$.

