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Problem 1. Let n be a positive integer. Consider the square grid whose endpoints are A(0, 0), (n, 0),
B(n, n), (0, n). Prove that the number of paths from (1, 0) to (n, n) that don’t cross the diagonal AB (the
path is allowed to touch the diagonal, but not cross it) is

1

n + 1

(
2n

n

)
.

Also show the number of paths from (1, 0) to (n, n) that don’t touch the diagonal AB is

1

n

(
2n− 2

n− 1

)
.

Figure 1: Catalan Diagram.

Solution 1. Let’s consider the first part. Let Cn be the number of paths1. Fix k ∈ {0, 1, 2, . . . , n − 1}.
We’ll count the number of paths that satisfy that k is the largest number less than n where the path touches
(k, k). The number of paths to reach (k, k) is Ck. The next step after (k, k) has to be to (k + 1, k). From
there, the path to (n, n) cannot touch the diagonal again, therefore it must reach (n, n− 1). The paths from
E = (k + 1, k) to F = (n, n− 1) don’t cross the diagonal EF , because if they would, they would touch the
AB line again. But the number of paths from E to F in such conditions resemble the original problem after
translating everything by (k + 1, k) to get E′ = (0, 0) and F ′ = (n − k − 1, n − k − 1). Hence the number
of paths from (k, k) to (n, n) is Cn−k−1. Note that the second part of the problem is the case k = 0, so the
answer to part 2 is Cn−1. If we prove Cn = 1

n+1

(
2n
n

)
, then we prove both parts. Going back to our analysis:

given k, the number of paths that last touch the diagonal at (k, k) is CkCn−k−1. After adding for all values
of k ∈ {0, 1, 2, . . . , n− 1} , we get the following identity:

Cn = C0Cn−1 + C1Cn−2 + C2Cn−3 + . . . + Cn−1C0 =

n−1∑
k=0

CkCn−k. (1)

1We use this notation because these numbers are called Catalan numbers.
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We know C0 = 1. Then C1 = C0C0 = 1, so C2 = C0C1 + C0C1 = 2. Then C3 = C0C2 + C1C1 + C2C0 =
2 + 1 + 2 = 5. Note that

C0 = 1 =
1

1

(
0

0

)
, C1 = 1 =

1

2

(
2

1

)
, C2 = 2 =

1

3

(
4

2

)
, C3 = 5 =

1

4

(
6

3

)
.

We’ll proceed with a technique known as “generating functions”. Let c(x) be the following polynomial:

c(x) =

∞∑
n=0

Cnx
n. (2)

Now, use that C0 = 1 and (1), and plug into (2) to get

c(x) = 1 +

∞∑
n=1

n−1∑
k=0

CkCn−k−1x
n

= 1 + x

∞∑
n=1

n−1∑
k=0

CkCn−k−1x
n−1

= 1 + x

∞∑
n=0

n∑
k=0

CkCn−kx
n.

The last equality is due to changing the variable n to n− 1. Now change the order of the summands. To do
this note that k ranges from 0 to ∞, but then n ≥ k, so

c(x) = 1 + x

∞∑
k=0

∞∑
n=k

CkCn−kx
n

= 1 + x

∞∑
k=0

Ck

∞∑
n=k

Cn−kx
n

= 1 + x

∞∑
k=0

Ckx
k
∞∑

n=k

Cn−kx
n−k

= 1 + x

∞∑
k=0

Ckx
k
∞∑

m=0

Cmxm

= 1 + x

( ∞∑
k=0

Ckx
k

)( ∞∑
m=0

Cmxm

)
= 1 + x(c(x))2.

Using the quadratic formula, we get that

c(x) =
1±
√

1− 4x

2x
. (3)

There are two candidates for c(x) because of the ±. Let’s figure out which one is the correct one. Note that
because the total number of paths from A to B is

(
2n
n

)
, then Cn ≤

(
2n
n

)
. But

(
2n
n

)
≤ 4n because the sum

of the binomial coefficients in the 2n-th row of Pascal’s triangle is 22n = 4n. Using that C0 = 1, and that
Cn ≤ 4n, we get

c

(
1

8

)
=

∞∑
n=0

Cn

(
1

8

)n

≤ 1 +

∞∑
n=1

4n
(

1

8

)n

= 1 + 1 = 2.

But

1 +
√

1− 4
8

2
(
1
8

) > 4 > 2 ≥ c

(
1

8

)
.
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Therefore c(x) = 1−
√
1−4x
2x .

Now, consider the following theorem:

Theorem 1 (Newton’s Generalized Binomial Theorem). Let x and y be real numbers with |x| > |y|. Let r
be another real number. Then

(x + y)r = xr + rxr−1y +
r(r − 1)

2!
xr−2y2 +

r(r − 1)(r − 2)

3!
xr−3y3 + . . . ,

where the sum has infinitely many terms. Note that when r is a positive integer, the coefficient of xr−kyk is
0 for all k > r, and it matches the well-known Binomial Theorem.

In particular, if x = 1 and r = 1/2, we have√
1 + y = 1 +

1

2
y +

1(−1)

22 · 2!
y2 +

1(−1)(−3)

23 · 3!
y3 + . . .

The coefficient of yn (for n ≥ 1) looks like

1(−1)(−3) · · · (−(2n− 3))

2n · n!
= (−1)n−1

(2n− 3)(2n− 5) · · · (3)(1)

2n · n!

= (−1)n−1
(2n− 2)!

2n · n! · (2n− 2)(2n− 4) · · · (4)(2)

= (−1)n−1
(2n− 2)!

2n · n! · 2n−1(n− 1)!

= (−1)n−1
(

2

n · 4n

)(
2n− 2

n− 1

)
.

Now, let y = −4x. Then we have

√
1− 4x = 1 +

∞∑
n=1

(−1)n−1
(

2

n · 4n

)(
2n− 2

n− 1

)
(−4x)n

= 1− 2

∞∑
n=1

1

n

(
2n− 2

n− 1

)
xn.

Therefore

c(x) =
1−
√

1− 4x

2x

=
1−

(
1− 2

∑∞
n=1

1
n

(
2n−2
n−1

)
xn
)

2x

=

∞∑
n=1

1

n

(
2n− 2

n− 1

)
xn−1

=

∞∑
n=0

1

n + 1

(
2n

n

)
xn.

By the definition of c(x) we can now conclude that

Cn =
1

n + 1

(
2n

n

)
.

Alternative Solution : The following beautiful solution is due to the 19th century French mathematician,
Désiré André [?].

Consider all paths from (0, 0) to (n, n) regardless of whether they satisfy the conditions. We’ll call the
paths that go over the diagonal “bad paths”. We will count the number of bad paths in a clever way. The
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Figure 2: The invalid portion of the path is flipped. The original path is after (k, k + 1) is drawn in red
dashes, while the new path is drawn in solid red. Note how the new path ends at (n − 1, n + 1) instead of
(n, n). This figure was created by Javalenok (Own work) [CC BY-SA 4.0 (http://creativecommons.org/
licenses/by-sa/4.0)], via Wikimedia Commons.

idea is to consider the diagonal GH where G = (0, 1), and H = (n− 1, n). If a path is bad, it must intersect
this diagonal. Consider the first intersection in the path. Then reflect versus AB everything beyond this
intersection as in Figure 2.

In a path from A to B there must be n horizontal steps and n vertical steps. Let (k, k + 1) be the first
time you intersect GH (in a bad path). Then you have taken k horizontal steps and k + 1 vertical steps. So
the rest of the path would have n− k horizontal steps and n− k − 1 vertical steps. The action of reflection
changes the horizontal steps to vertical and viceversa. Therefore, after (k + 1, k), the new path has n − k
vertical steps and n− k − 1 horizontal steps. Overall you take k + (n− k − 1) = n− 1 horizontal steps and
k + 1 + (n− k) = n + 1 vertical steps. Therefore you end up in (n− 1, n + 1). So every “bad path” can be
associated to a path from (0, 0) to (n− 1, n + 1). It goes both ways, since the steps are reversible. Indeed,
consider a path from (0, 0) to (n− 1, n+ 1). Let (k, k + 1) be the smallest k through which the path goes (it
must intersect GH, so such a k exists). Then flip everything past this point. Now you have a “bad path”
from (0, 0) to (n, n). Therefore, the number of bad paths, is the number of paths from (0, 0) to (n−1, n+1).
The number of such paths is (

(n− 1) + (n + 1)

n− 1

)
=

(
2n

n− 1

)
.

Since the number of total paths is
(
2n
n

)
, then

Cn =

(
2n

n

)
−
(

2n

n− 1

)
=

(2n)!

n!n!
− (2n)!

(n− 1)!(n + 1)!

=
(2n)!

n!n!

(
1− n

n + 1

)
=

1

n + 1

(
2n

n

)
.
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