Senior Seminar Homework for Chapter 3

1. (a) Given positive integers $A>B$, and positive integer m, prove that the integer $\left(A^{m}-B^{m}\right)$ is a multiple of $(A-B)$.
(b) Let $k>1$ be a positive integer. Prove that if $2^{k}-1$ is a prime number, then k must be prime. Hint: proof by contradiction.
2. (a) Given positive integers A, B, and odd positive integer m, prove that the integer $\left(A^{m}+B^{m}\right)$ is a multiple of $(A+B)$.
(b) Let $k>1$ be a positive integer. Prove that if $2^{k}+1$ is a prime number, then k must be a power of 2 . Hint: proof by contradiction.
3. (a) Prove (by induction or some other clever technique) that for r a positive integer, we have

$$
1+2+4+\ldots+2^{r}=2^{r+1}-1
$$

(b) Let k be a positive integer. Let $p=2^{k}-1$. Let $n=p \times 2^{k-1}$. Prove that if p is prime, then n is a perfect number. Hint: Since the prime factorization of n is exactly $p \times 2^{k-1}$, just find all the positive integer factors of n and then add up all the proper factors (those less than n).

