Homework: Chapter 8

1. Review of how to sum a telescopic series rigorously: By definition, $\sum_{k=1}^{\infty} \frac{2}{k^{2}+k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2}{k^{2}+k}$. We have
$\sum_{k=1}^{n} \frac{2}{k^{2}+k}=\sum_{k=1}^{n}\left(\frac{2}{k}-\frac{2}{k+1}\right)=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4} \ldots+\frac{2}{n}-\frac{2}{n+1}=\frac{2}{2}-\frac{2}{n+1}$.
Thus $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2}{k^{2}+k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{2}{k}-\frac{2}{k+1}\right)=\lim _{n \rightarrow \infty}\left(\frac{2}{2}-\frac{2}{n+1}\right)=1$.
Use this technique to find the value of the sum $\sum_{k=2}^{\infty} \frac{2}{k^{2}-1}$ by using partial fractions and then writing out the series to see that everything cancels except a few terms.
2. Find the value of the sum $\sum_{k=1}^{\infty} \frac{8}{4 k^{2}-1}$ again by using partial fractions and canceling as in $\# 1$.
3. Using the inequality proven in the talk that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2^{k}} \geq \frac{k+2}{2}$ for $k \geq 0$, find a value of n such that guarantees $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 1000$.
4. Using the inequality that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq \int_{1}^{n+1} \frac{1}{x} d x$ for $n \geq 1$, find a value of n such that guarantees $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 1000$.
