Homework 1 volutions
3.1 Determine which are tie and alice are poles:
a) 31100 . False because $100=3\left(\frac{100}{3}\right)$ and $\frac{100}{3}$ is not anintegen.
b) 3199 . True because $99=3.33$.
c) $-3 / 3$. True because $3=(-3)(-1)$.
d) $-5 \mid-5$. True beccure $-5=(-5)(1)$.
e) $-2 \mid-7$. False because $-7=(-2)(7 / 2)$ and $7 / 2$ is not aninteg.
f) 014 . Falls become $4 \neq 0 \cdot k$ for any integer k.
I) 410 . True lecurre $0=4.0$ and 0 is an integer.
h) 010 . True because $0=0.1$ and 1 is an integer
3.4) $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$

Let's define \mathbb{E} using N,
If $a, b \in \mathbb{Z}$ and $a-b \in \mathbb{N}_{0}$ then $b \leq a$ one of $a, b \in \mathbb{Z}$ and $a-b \in \mathbb{N}_{0}$ and $a \neq b$ then $b<a$ and $a>b$.
3.5 Every integer is rational becaure if n is am integer then $n=\frac{n}{1}$ so it is a ratro of t wo integers.
Not all rational numfers are integers beceuse $1 / 2$ is not an unteger yet it is rational.
3.7 n is the squarerool of a number m if $n^{2}=m$.
3.12 How many positive divison do each of the folloing have?
a) 8 : 4 divirars
b) 32 : 6 diveios
c) $2^{n}: n+1$ divijos
d) $10: 4$ dirison
e) 100: 9 divisons
f) 1000000: 49 devirons
g) $10^{n}:(n+1)^{2}$ divison
$h \sqrt{30}=8 \times 5$: 8 divizors
-i) $122 \times 3 \times 7$: 8 divixom Same as 30 beceure they have the seme number of prins focton raised to the some pomer.
j) $2310=2 \times 3 \times 5 \times 7 \times 11: 32$ divisors.

1) $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8=2^{7} \times 3^{7} \times 5 \times 7$

The divirons are numbers of the form $2^{\alpha_{1}} \cdot 3^{\alpha_{2}} \cdot 5^{\alpha_{3}} \cdot 7^{\alpha_{4}}$ where $0 \leq \alpha_{1} \leq 7,0 \leq \alpha_{2} \leq 2,0 \leq \alpha_{3} \leq P$ and $0 \leq \alpha_{4} \leq 1$ so there are $8 \times 3 \times 2 \times 2=(96$ divisors) of 8 !

1) 0 d| 0 if \quad an integer a $5+0=d \cdot a$ - since $a=0$ works for any.

0 has infinitely many divisor.
3.13
a) 6
b) The next perfect number is 496
4.1 Reunite in the form "If A, then B "
a) If x and y are even and odd integers, respectively, then $x y$ is even.
b) If x is a odd, then x^{2} is ode.
c) If p is prime, then p^{2} is not prime.
d) d a and b are negative numbers, then $a b$ is negative.
e) dy $\triangle B C D$ is a pombers with diagonal $\overline{A C}$ and $\overline{B D}$, then $\overline{A C}$ is perpendicular to $\overline{B D}$.
f) If $\triangle A B C$ and $\triangle D E F$ are congruent triangles, then the area of $\triangle A B C$ equals the area of $\triangle D E F$.
g) $d y$ a, b and c are consecutive integers, then $3 \mid a+b+c$.
4.2 d will write \rightarrow in "If A, them B " is true, \leftarrow in "If B, then A " and \longleftrightarrow i "A if and only if B ".
$a) \longleftarrow\binom{$ Every square is a rectangle bit }{ not every rectangle is a squame }
$b) \longrightarrow\binom{$ Every rectangle is a parallellogram }{ but not every parallellogram is a retarge }
$c) \rightarrow\left(\begin{array}{l}\text { Being a grandfather implies ore is mule. } \\ \text { Being male }\end{array}\right.$ BRing male. does not ininly one is a grandetiled.
ad) \longrightarrow
$e) \longleftarrow$ (Every leap year is a multiple of 4, but not $)$ all multiples of 4 are leap year, for example $1900,1800,1700$ were not leap years and 2100,2200, 2300 wont be leap years
f) Neither.
g) $\rightarrow \quad j) \leftarrow$
h) \longleftrightarrow
$k) \leftarrow$
i) \longleftrightarrow
14.7 Because the equilateral triangle is not a might triangle.

Homework \#2
Solutions
5.) Proof:

Let x and y be odd integers.
Since x and y are odd there exist a and b such that $x=2 a+1$ and $y=2 b+1$.

$$
\begin{aligned}
x+y & =2 a+1+2 b+1 \\
& =2(a+b)+2 \\
& =2(a+b+1) \\
& =2 c
\end{aligned}
$$

where c is the integer $a+b+1$.
Therefore there exist an integer c such that

$$
x+y=2 c,
$$

therefore $x+y$ is even is
5.7 Proof:

We wat to thou "dp n is odd then n^{2} is odd" "
Let n be an odd integer. Therefore $n=2 a+1$ for some integer a.

$$
\begin{aligned}
n^{2}=(2 a+1)^{2} & =4 a^{2}+4 a+1 \\
& =2\left(2 a^{2}+2 a\right)+1 \\
& =2 c+1
\end{aligned}
$$

where $c_{2}=2 a^{2}+2 a$ is an integer.
Therefore $n^{2}=2 c+1$ for nome c, fo n^{2} is an odd integer.
5.11 Proof: Let a, b, d, x and y be integers.

Since da there exists m such that $a=d m$.
since d / b there exists n such that $b=d n$.
Therefore $a x+b y=d m x+d n y=d(m x+n y)=d c$,
where C is the integer $m x+n y$.
Therefore $a x+b y=d c$ with c an integer Therefore dlax+by.
5.18 Proof: Let m and n be consecutive perfect squares with $n>m$.
Sine $m^{\text {on d }}$ are a perfect squares then $m=a^{2}$ and $n=b^{2}$ for some integer a and b. Since $n>m, b^{2}>a^{2}$. Sine they are consecutive squares $b=a+1$.

Therefore $n-m=b^{2}-a^{2}$

$$
\begin{aligned}
& =(a+1)^{2}-a^{2} \\
& =a^{2}+2 a+1-a^{2} \\
& =2 a+1
\end{aligned}
$$

Therefore $n-m$ is odd.
(Note d assumed $n>m$, but that is not given, so technically one must do both cases $n>m$ and $m>n$, \& avoid that here lime bot cases are symmetric).
5.23 If you only prove "If A, then C" then it could be the are that for some time instames of B, C is false, wo then Gourd have a inv instance of A or B where C is false, hence "dr A or B, then C " is fake in that care. Therefor you need to prove bath "dp A, then C " and "dp B, then C ". Now the rearor proving hots proves "of A or B, then C " is that A or B mean either an instame of A is true or an intend of B is true, but we know that in either cess, C is forced to be tres showing "def A a B, then C ".
6.1) $a=1, b=-1$ is a counterexample. dried $+1 \mid-1$ and $+1 \leq-1$ is false.
6.3 $a=6, b=2, c=3$ is a counter example.
6) (2)(3) fut 6×2 and 6×3.
6.6 . $p=11$ is a counter example because $2^{\prime \prime}-1$ is composite
6.9 a) List them
b) $n=41$ is a counterexample becoure
$41^{2}+41+41$ is a multiple of 41 , hence composite
(note 40 is also a counterexample).
$6.13 \quad n=30$ has 3 prime factor and it is composite, so it's a counterexample.
7.1 a) F
c) F
e) T
b) T
d) F
7.6

x	y	$x \leftrightarrow y$	$x \rightarrow y$	$y \rightarrow x$	$(x \rightarrow y) \wedge(y \rightarrow x)$
I	T	T	T	T	T
F	F	F	T	F	
F	T	F	T	F	F
F	F	T	T	T	T

Since the column for $x \leftrightarrow y$ and $(x \rightarrow y) \wedge(y \rightarrow x)$ are the same they are equivalent statements,
7.10 事

x	y	$x \rightarrow y$	$y \rightarrow x$	$x \longleftrightarrow y$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

a) When $x=T$ and $y=F \quad x \rightarrow y$ is T but $y \rightarrow x$ is F.
b) When $x=F$ and $y=T \quad x \rightarrow y$ is T but $x \leftrightarrow y$ is F.
c) dr $x=T$ and $y=T$ then $x \vee y=T$
but $(x \wedge \neg y) \vee((\neg) \wedge y)=(T \wedge(T)) \vee((\neg T) \wedge T)$

$$
\begin{aligned}
& =(T \wedge F) \vee(T \wedge F) \\
& =F \vee F=F
\end{aligned}
$$

to they cant de logically equiralat.
7.11 a)

x	y	$(x \vee y) \vee(x \vee \neg y)$
T	T	$(T \vee T) \vee(T \vee F)=T \vee T=T$
T	F	$(T \vee F) \vee(T \vee T)=T \vee T=T$
F	T	$(F \vee T) \vee(F \vee F)=T \vee F=T$
F	F	$(F \vee F) \vee(F \vee T)=F \vee T=T$

c)

x	y
I	$(\neg(\neg x)) \leftrightarrow x$
I	$(\neg F) \leftrightarrow F=T \leftrightarrow T=T$
F	$(\neg F) \leftrightarrow T=T \longleftrightarrow T=T$
F	T

e)

do all cases yiedd true.
7.13 a) of x is true then $(x \vee y) \wedge(x \vee \neg y) \wedge \neg x=$ False sine $7 x$ is false.

Assume x is false. Then were left with cases $y=T$ and $y=F$.
when $y=T \quad(x \vee \neg y)=F$ so $(x \vee y) \wedge(x \vee \neg y)=F$
ne the whole thing is pole. when $y=F(x, y)=F$ and wo everything is fable.
(you com also do it with a truth tall).
b)

x	y	$x \wedge(x \rightarrow y) \wedge(\neg y)$
T	T	$T \wedge(T \rightarrow T) \wedge F=F$
T	F	$T \wedge(T \rightarrow F) \wedge T=F$
F	T	$F \wedge C) \wedge(T=F$
F	F	$F \wedge() \imath C)=F$.

c) | x | $(x \rightarrow y) \wedge((\neg x) \rightarrow y) \wedge \rightarrow y$ | |
| ---: | :---: | :---: |
| T | T | $T \wedge(F \rightarrow T) \wedge F=F$ |
| T | F | $F \wedge(1) \wedge()=F$ |
| E | T | $\wedge(T \rightarrow T) \wedge F=F$ |
| F | F | $T \wedge(T \rightarrow F) \wedge T=F$ |

7.17 there are 16,2 chon for $(T, T), 2$ to $(T * F)$

$$
2 \text { FA FA and } 2 \text { fo F*E }
$$

no $2^{4}=16$ possibilities.

