Homework 3
Solutions
8.2 There are 26 letter in the alphabet so

$$
26 \times 26 \times 26=26^{3} .
$$

8.4 4 settings, 3 option fo air stream, 2 option for the AC button, 4 temperature options, 2 option for recurulale button sa there are
$4 \times 3 \times 2 \times 4 \times 2$ possibilities.

$$
(4 \times 3 \times 2 \times 4 \times 2=192)
$$

$8.818 \times 7 \times 6$
8.10 a) $26 \times 26 \times 26 \times 10 \times 10 \times 10=26^{3} \times 10^{3}$
b) $26 \times 2 \times 25 \times 24 \times 10 \times 9 \times 8$

Also accept: $(26)_{3} \times(10)_{3}$ or $\frac{26!}{23!} \cdot \frac{10!}{7!}$
8. 15 a choices for first digit $1,2,3, \ldots, 9$
a choices for second digit (anything but wheteres the fins digit is)
q choice for third, fourth and fifth dags (same reason as second digit), so the ornuer is

$$
9 \times 9 \times 9 \times 9 \times 9=9^{5}
$$

9.2 a) $(6+8+5)!=19!$
b) 3 ! ways of choosing the order of the languages, 6: of choosing the order of the french books, 8! fo Russicen and 5: fo spanish, se there are $(3!)(61)(8!)(5!)$ of arranging the backs.
$9.5 \frac{100!}{98!}=(100)(99)=9900$
9.7. Use calculator to check.
9.9. $\mid x_{1}!=1$

$$
\begin{aligned}
& 1!+2 \cdot 2!=5 \\
& 1!+2 \cdot 2!+3 \cdot 3!=23 \\
& !!!+2 \cdot 2!+3 \cdot 3!+4 \cdot 4!=119 \\
& 1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+4 \cdot 4!+5 \cdot 5!=719
\end{aligned}
$$

Conjecture $\sum_{k=1}^{n} k \cdot k!=(n+1)!-1$
(Proof for those interested:

$$
\begin{aligned}
& \sum_{n=1}^{n} k \cdot k!=\sum_{n=1}^{n}(k+1-1) k!=\sum_{k=1}^{n}(k+1)!-k! \\
& =2!-1!+3!-2!+4!-3!+\cdots+n!-(n-1)!+(n+1)!-n! \\
& =(n+1)!-1
\end{aligned}
$$

an 9.11. $2 \mid 1000!$ and 212 so $2 \mid 1000!+2$
Similarly for $2 \leq k \leq 1000$
$k \mid 1000!$ and $k \mid k$ so $k \mid 1000!+k$
Therefor 1000 ! th is composite $\left(\begin{array}{c}\text { since } k<100!+k \\ \text { and } k l 100!+k \\ \text { and } k>1\end{array}\right)$ To check $1000!+1001$ note $7 / 1001$ so $7 / 1000!+1001$ and $1000!+1002$ is even so it's composite. Hence $1000!+2, \ldots, 1000!+1001,1000!+1002$ are composite.

A nix corollary of 9.11 is that for any n there are at least n compentine conte numbers, indeed $(n+1)!+2,(n+1)!+3, \ldots,(n+1)!+(n+1)$ are n Consecutive composite numbers.
10.1 a) $\{3,6,9\}$
e) $\{\Phi\}$
b) $\{2\}$
f) $\{-100,-50,-20,-10,10,20,50,100\}$
c) $\{-2,2\}$
g) $\{\phi,\{1\},\{2\},\{3\},\{4\},\{5\}\}$
d) ϕ
10.4 a) 6
c) ϵ
e) \leq
b) \subseteq
d) \leq
f) \subseteq
g) t
10.9 Proof:

Let $x \in A$.
rime $A \leq B$ then $x \in B$.
sine $B \in C$ then $x \in C$.
Therefore $x \in C$. Hence $A \subseteq C$
Let $x \in C$.
Sine $C \in A$, then $x \in A$.
Therefore $x \in A$. Hence $C \leq A$.
Therefor $A=C$.
10.14 The empty set ϕ.

Aneled $\phi \subseteq\{\phi\}$.

Homework 4
Solutions
(11.1) a) $\forall x \in \mathbb{Z}$, is is pringre
b) $\exists n \in \mathbb{Z}$, such that n is neither prime nor composite
c) $\exists n \in \mathbb{Z}$, such that $n^{2}=\mathbb{Z}$.
d) $\forall n \in \mathbb{Z}, 5 \ln$.
e) $\exists n \in \mathbb{Z}, 7 / n$.
f) $k n \in \mathbb{Z}, n^{2} \geq 0$.
g) $\forall x \in \mathbb{Z} \quad \exists y \in \mathbb{Z}, \quad x y=1$.
5) $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x / y=10$.
i) $\exists n \in \mathbb{Z}, \forall m \in \mathbb{Z}, n m=0$.
j) $\forall n \in \mathbb{Z} \quad \exists m \in \mathbb{Z}, m>n$.
K) $\forall p \in$ people $\exists n \in$ people, ρ loves n.
(11.2) g) $7 x \in \mathbb{Z}, x$ is not prime
b) $\forall n \in \mathbb{Z}, n$ is either prime or composite
c) $\forall n \in \mathbb{Z}, \quad n^{2} \neq 2$.
d) $\exists n \in \mathbb{Z}, 5+n$. (Note $a \nmid b$ if a does not divide b)
e) $\forall n \in \mathbb{Z}, \quad 7+n$
f) $\exists n \in \mathbb{Z}, n^{2}<0$.
g) $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x y \neq 1$.
h) $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x / y \neq 10$.
i) $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z} \quad n m \neq 0$.
j) $\exists n \in \mathbb{Z}, \forall m \in \mathbb{Z}, m \leq n$.
k) Ipeprople, $\forall n \in$ people, p does not love n.

In English:
a) There exists on integer that is not prime.
b) Every integer is either prime or composite.
c) There is no integer n satisfying $n^{2}=2$. (or every integer n satisfies $n^{2} \neq 2$).
d) There is an integer that is not divisible by 5 .
e) There is no integer divisible by 7 .
f) There is an integer morose square is negetiere.
g) There is an integer x for which no matter the choice of integer e $y, x y \neq 1$.
h) Every integer x and every integer y satisfy that $x / y \neq 10$.
i) For every integer there is an integer it can be multiplied by to get a nonzero number.
j) There is an integer fargo' themery ithitegen.
k) Someone doesit love anyone anytime.
11.4 a) $F \quad(x=2, y=1 \quad 2+1 \neq 0)$
b) T
(Let $y=-x \quad x+y=0)$
c) F
(suppose x evita then $x+x=0$ so $x=0$. But $y x=0, y=1$ shes ont ed)
d) T
(for any $x, y=-x$ works)
e) F
($x=y=1$ pails)
f) T
(let $y=0$)
g) T
(let $x=0$)
h) T
(let $x=y=0$).
11.7 a) Fave. Only $x=2$ satisfies $x \in N$ and $x^{2}=4$.
b) False. $x=2$ and $x=-2$ work.
c) False. No integer satisfies $x^{2}=3$.
d) True. Orly $x=0$ ratifies the condition.
e) True. Only $x=1$ satisfies the condition.
(12.) $A=\{1,2,3,4,5\}, \quad B=\{4,5,6,7\}$
a) $A \cup B=\{1,3,3,4,5,6,7\}$
b) $A \wedge B=\{4,5\}$
c) $A \backslash B=\{1,2,3\}$
d) $B>A=\{6,7\}$
e) $A \triangle B=\{1,2,3,6,7\}$
f) $A \times B=\{(1,4),(1,5),(1,6),(1,7)$,
$(2,4),(2,5),(2,6),(2,7)$,

$$
(3,4),(3,5),(3,6),(3,7)
$$

$$
(4,4),(4,5),(4,6),(4,7),
$$

$$
(5,4),(5,4),(5,6),(5,7)\}
$$

g) $B \times A=\{$

$$
\begin{aligned}
& (4,1),(4,2),(4,3),(4,4),(4,5), \\
& (5,1),(5,2),(5,3),(5,4),(5,5), \\
& (6,1),(6,2),(6,3),(6,4),(6,5), \\
& (7,1),(7,2),(7,3),(7,4),(7,5)\}
\end{aligned}
$$

(12.5) Things to prove:
() $A \cup B=B \cup A$
(2) $A \cap B=B \cap A$
(3) $A \cup(B \cup C)=(A \cup B) \cup C$
(4) $A \cap(B \cap C)=(A \cap B) \cap C$
(5) $A \cup \phi=A$
(6) $A \cap \varnothing=\varnothing$
(7) $A \cup(B \cap C)=(A / B) \cap(A \cup C)$
(8) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Let's prove ore by ore.
(1) $x \in A \cup B$ sa $x \in A$ or $x \in B$
thisefore $x \in B$ or $x \in A$ so $x \in B \cup A$. Simitaing $x \in B \cup A$ implies $x \in A \cup B$.
(2) $x \in A \cap B$ so $x \in A$ and $x \in B$ so $x \in B$ and $x \in A$ so $x \in B \cap A$.

By symmetry (and commatatirity of and) $x \in B \cap A$ implies $x \in A \cap B$.
(3) $x \in A \cup(B \cup C)$ so $x \in A$ or $x \in B \cup C$

$$
\begin{aligned}
& \text { so } x \in A \text { or } x \in B \text { or } x \in C \\
& \text { so }(x \in A \text { or } x \in B) \text { or } x \in C \\
& \text { so } x \in(A \cup B) \cup C \text {. }
\end{aligned}
$$

If $x \in(A \cup B) \cup C$ then

$$
\begin{aligned}
& x \in A \cup B \text { or } x \in C \\
& \text { so } x \in A \text { or } x \in B a x \in C \\
& \text { so } x \in A \text { or }(x \in B \text { or } x \in C) \\
& \text { so } x \in A \cup(B \cup C) .
\end{aligned}
$$

(4) Same argument as above fut change U po \cap and "or" for "and".
5

$$
\Leftrightarrow
$$

Let $x \in A \cup \varnothing$.

$$
x \in A \text { or } x \in \varnothing \text {. }
$$

dr particular $x \in A$
$(L=)$ Let $x \in A \cup \phi$, then $x \in A$ or $x \in \varnothing$.
Since there is no x in $\phi, x \in A$.
so $x \in A$.
(6) $A \cap \phi=\phi$?

Yet $x \in A \cap \phi$ then $x \in A$ and $x \in \phi$ na $x \in \phi$. Let $y \in \varnothing$ then sine $y \in \varnothing$ is false, $y \in A \cap \varnothing$
(False implies anneything)
to $A \cap \phi=\varnothing$.
(7)

$$
\begin{aligned}
& x \in A \cup(B \cap C) \\
& x \in A \text { or } x \in B \cap C
\end{aligned}
$$

So $x \in A$ or $(x \in B$ and $x \in C)$.

- cares:
a) $x \in A, x \in B, x \in C$
b) $x \in A, x \in B, x \notin C$
c) $x \in A, x \notin B, x \in C$
d) $x \in A, x \notin B, x \notin C$
e) $x \notin A, x \in B, x \in C$
(note if $x \in A$, x is forced to be in $B A C$ so $x \in B$ andxec)
dr care a) $x \in A \cup B$ and $x \in A \cup C$ so $x \in(A \cup B) \cap(A \cup C)$.
in cone $b) \quad x \in A \cup B$ and $x \in A \cup C$ so $x \in(A \cup B) \cap(A \cup C)$. In case c) $x \in A \cup B$ and $x \in A \cup C$ so $x \in(A \cup B) \cap(A \cup C)$ $d x$ care d) $x \in A \cup B$ and $x \in A \cup C$ so $x \in(A \cup B) D(A \cup C)$ In axe e) $x \in A \cup B$ and $x \in A \cup C$ So $x \in(A \cup B) \cap(A \cup C)$
dr all cases $x \in(A \cup B) \cap(A \cup C)$.
now let $y \in(A \cup B) \cap(A \cup C)$
so $y \in A \cup B$ and $y \in A \cup C$.
$d x \quad y \in A$ then $y \in A \cup(B \cap C)$.
did $y \notin A$ then $y \in B-($ became $y \in A \cup B)$. Aus. $y \in C$ because $y \in A \cup C$
the in $y \notin A, y \in B \cap C$ so $y \in A \cup(B A C)$.
to we conclude $A \cup(B \cup C)=(A \cup B) \cap(A \cup C)$.
(8) $(A \cap B) \cup(A \cap C) \stackrel{?}{=} A \cap\left(B Q_{C}\right)$.
let $x \in A \cap(B \cup C)$.
$x \in A$ and $(x \in B$ or $x \in C)$.
By The 7,2

$$
(x \in A) \wedge((x \in B) \vee(x \in C))=((x \in A) \wedge(x \in B)) \vee((x \in A) A(x \in C)
$$

so $x \in A D B$ or $x \in A \cap C$.
so $\quad x \in(A \cap B) \cup(A \cap C)$.

Now let $y \in(A \cap B) \cup(A \cap C)$
Then $(y \in A$ and $y \in B)$ or $(y \in A$ and $y \in C)$
fo by The 7.2
$y \in A)$ and $(y \in B$ or $y \in C)$
so $y \in A \cap(B \cup C)$.
(Note The 7.2 could have been used for all NOTE: parts, d used different techniques on the different parts to illustrate different ways you could hare proved it.
(12.9) Let's disprove it.

Let $A=\{1,2,3\}, B=\{1,2\}$ and $C=\{4,5\}$
then $|A \cup B \cup C|=|\{1,2,3,4,5\}|=5$
but $|A|=3,|B|=2$ and $|C|=2$

$$
\text { so } \quad|A|+|B|+|C|=7 \neq 5
$$

(12.12) Let's disprove it:
$A=\{1 F=B$ is a counterexample because

$$
A \Delta B=\varnothing \text { so }|A \Delta B|=0
$$

$$
|A|+|B|-|A \cap B|=1+1-1=1 \neq 0 .
$$

(12.21 a) $A=\{1\}, C=\{1\}, B=\{2\}$

$$
\begin{aligned}
& A-(B-C)=\{1\}-(\{2\}-\{1\})=\{1\}-\{2\}=\{1\} \\
& (A-B)-C=(\{1\}-\{2\})-\{1\}=\{1\}-\{1\}=\varnothing
\end{aligned}
$$

So they are different
b) $(A-B)-C=(A-C)-B$

Let's prove it:
Let $x \in(A-B)-C$
so $x \in A \backslash B$ and $x \notin C$
so $x \in A$ and $x \notin B$ and $x \notin C$
so $(x \in A$ and $x \notin C)$ and $x \notin B$
so $x \in A \backslash C$ and $x \notin B$
so $x \in(A>C) \backslash B$.
Now let $y \in(4 \backslash) \mid B$.
bo $y \in A \backslash C$ and $y \notin B$
so y EA and $y \notin C$ and $y \notin B$.
so $(y \in A$ and $y \notin B)$ and $y \notin C$
so $\quad y \in A \backslash B$ and $y \notin C$
so $y \in(A \backslash B) \backslash C$
C) Let $A=C=\{1\}, B=\{1,2\}$.

$$
\begin{aligned}
& A \cup B=\{1,2\} \quad A \cup B-C=\{2\} \\
& (A-C) \cap(B-C)=\phi \cap(B-C)=\phi \neq\{2\}
\end{aligned}
$$

So they are not equal.
d) Let $B=\{1,2\}$ and $C=\{3\}$
then $A=\{1,2\}$ and $A \cup C=\{1,2,3\} \neq B$.
So again, not equal.
e) Counter example: $A=\{1,2\}, C=\{1\} \Rightarrow B=A \cup C=\{1,2\}$.

$$
B \backslash C=\{2\} \neq\{1,25=A .
$$

f) $A=\{1\}, B=\{2\}$

$$
|A-B|=|\{1\}|=1
$$

but $|A|-|B|=1-1=0$
So it is a countererample.
g) $A=\{1,2\}, \quad B\{2,3\}$

$$
(A-B) \cup B=\{1\} \cup\{2,3\}=\{1,2,3\} \neq A
$$

to it is false.
h)

$$
\begin{aligned}
& A=\{1,2\}, \quad B=\{2,3\} \\
& (A \cup B) \backslash B=\{1,2,3\} \backslash\{2,3\}=\{1\} \neq A .
\end{aligned}
$$

12.24 Alell ure the following theorem repeatedy:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Prooy of 12.24: Let A, B, C be finite sets.

$$
\begin{aligned}
&|A \cup B \cup C|=|(A \cup B) \cup C| \\
&=|A \cup B|+|C|-|(A \cup B) \cap C| \\
&=|A|+|B|-|A \cap B|+|C|-|(A \cap C) \cup(B \cap C)| \\
&=|A|+|B|-|A \cap B|+|C|-(|A \cap C|+|B \cap C|-\mid A \cap C) \cap(B \cap C) \mid \\
&=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|(A \cap C) \cap(B \cap)|
\end{aligned}
$$

Sime $\$(A \cap C) \cap(B \cap C)=A \cap B \cap C$, we condude that

$$
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|
$$

(12.30) A, B, C are sets.
(a) \Rightarrow)

Let $x \in A \times(B \cup C)$
then $x=(a, b)$ where $a \in A$ and $b \in B \cup C$.
to $b \in B$ or $b \in C$.
therefore $(a \in A$ and $b \in B)$ or $(a \in A$ and $b \in C)$
Therefore $(a, b) \in(A \times B) \cup(A \times c)$.

$$
(\alpha=)
$$

Let $\quad x \in(A \times B) \otimes(A \times C)$
Therefore $x=(a, b)$ where $(a \in A$ and $b \in B)$
or $(a \in A$ and $b \in c)$.
$(a \in A$ and $b \in B)$ or $(a \in A$ and $b \in c)$ translates in Boolean algetru to

$$
\begin{gathered}
((a \in A) \wedge(b \in B)) \vee((a \in A) \wedge(b \in C)) \\
n o \\
(a \in A) \wedge(b \in B \vee b \in C) \\
\text { so } a \in A \text { and }(b \in B \text { or } b \in C) \\
\text { so so }(a, b) \in A \times(B \cup C) \\
x \in A \times(B \cup C)
\end{gathered}
$$

$(c)(\Rightarrow)$
Let $x \in A \times(B \backslash C)$.
Let $x=(a, b)$.
Then $a \in A$ and $b \in B \backslash C$
so $a \in A$ and $(b+B$ and $b \not c)$
so $a \in A$ and $b \in B$ and $b \notin c$
so $(a \in A$ and $b \in B)$ and $(a \in A$ and $b \notin c)$

$$
\begin{aligned}
& \text { so } \quad(a, b) \in(A \times B)>(A \times C) \\
& \text { so } x \in(A \times B)>(A \times c)
\end{aligned}
$$

(E)
Let $x \in(A \times B) \backslash(A \times C)$ yet $x=(a, b)$
se $x \in(A \times B)$ and $x \notin(A \times C)$
Sima $x \in A \times B$ then $a \in A$ and $b \in B$. Since $a \in A$ and $(a, b) \notin A \times C$ then $b \notin C$. Therefore $(a \in A$ and $b \in B)$ and $(a \in A$ and $b \notin C)$

Therefore $(a \in A)$ and $(b \in B$ and $b \notin C)$
so $(a, b) \in A \times(B \backslash C)$

$$
50 \quad x \in A \times(B+C)
$$

