Homework 3 SOLUTIONS

8.2 There are 26 letters in the alphabet 50 26×26×26 = 263. 8.4 4 settings, 3 option for air stream, 2 option for the Ac button 4 temperature option, 2 option for recirculate button no there are 4×3×2×4×2 possibilities. (4x3x2×4x2=192) 5.8 | 8 x 7 x 6 / 8.10 a) $26 \times 26 \times 26 \times 10 \times 10 \times 10 = 26^3 \times 10^3$ 164 ters rumber $5) 26 \times 25 \times 24 \times 10 \times 9 \times 8$ Also accept: (26)3 x (10)3 or 26! 10! 8.15 9 choices for first digit 1,2,3,...,9
9 choices for second digit (anything but wheterer
the first digit is).
9 choices for third, fourth and fifth digits (same reason so the answer is $9\times9\times9\times9\times9=9^{3}$ 9.2 a) (6+8+5) = 19!b) 3' ways of choosing the order of the larguages, 6' of choosing the order of the french books, 8' for Russian and 5' for spanish, see there are (3!) (6!) (8!) (5!) of arranging the books.

Hence 1000/+2, ..., 1000/+1001, 1000/+1002 are composite.

a nice corollary of 9.11 is that for any n there are at least n composite number, indeed (n+1)! +2, (n+1)!+3,..., (n+1)!+(n+1) are n consecutive composite numbers. 10.1 a) { 3, 6, 9} e) { 0} b) {z} f) {-100,-50,-20,-10,10,20,50,100} C) Z-Z, 2 J A) Ø 9)6 10.9 Proof: Since A & B then X & B. Sime BCC then xCC. Therefore xCC. Hence ACC Let $x \in C$. Jine $C \subseteq A$, then $x \in A$. Therefore $x \in A$. Hence $C \subseteq A$. Therefor A=C 10.14 The empty set o. Ineled \$ \(\tilde{\chi} \).

Honework 4 Solution

(1) a) $\forall x \in \mathbb{Z}$, such that n is neither prime nor composite. c) $\exists n \in \mathbb{Z}$, such that $n^2 = 3$. e) 7 n e Z, 7/n. f) Vn e 77 Yne Z, n²20. q) + x e Z 3 4 e Z , x g = 1. $h) \exists x \in \mathbb{Z}, \exists g \in \mathbb{Z}, x/g = 10.$ $i) \exists n \in \mathbb{Z}, \forall m \in \mathbb{Z}, nm = 0.$ j) Yn EZ Im EZ, m>n. K) Y p E People In E people, p loves n. (1.2 g) $\exists x \in \mathbb{Z}$ x is not prime or composite of $\forall x \in \mathbb{Z}$, $\forall x \in$ d) In & Z, 5th, (Note at bif a does not divide b) e) YneZ, 7th $f) \exists n \in \mathbb{Z}, n^2 < 0.$ g) $\exists x \in \mathbb{Z}$ $\forall y \in \mathbb{Z}$, $xy \neq 1$. h) $\forall x \in \mathbb{Z}$, $\forall y \in \mathbb{Z}$ $\forall y \neq 10$. i) $\forall n \in \mathbb{Z}$, $\exists m \in \mathbb{Z}$ where $n \neq 0$. $\exists n \in \mathbb{Z}, \forall m \in \mathbb{Z}, m \in n.$ K) I pe people, Vnepeople, p does not love n. In English a) There exists an integer that is not grime b) Every integer is either prime or comparite.

c) There is no integer neatisfying n=2.

(or every integer neatisfigm n=2).

d) There is an integer that is not divisible by 5. e) There is no integer divisible by 7. f) There is an integer whose square is regative.

There is an integer x for which no matter the choice of integer y, xy \$\frac{1}{2}\$.

<i>P</i>)	Every integer x and every integer y satisfy that */y + 10.
The statement of the st	² /y + 10;
•	For every integer there is an integer it can be multiplied by to get a nonzero number.
	There is an interior larger with overy interior
k)	There is an integer forgrund them every the teger. Someone doesn't love anyone anytime.
i i	a) F $(x=2, y=1 2+(\pm 0))$ b) T $(\text{let } y=-x x+y=0)$
1 1	b) T (let $y = -x$ $x + y = 0$) c) F (suppose x exists then $x + x = 0$ so $x = 0$. But $y = x = 0$, $y = 1$ on $y = 1$ of $y = 1$ of $y = 1$ or $y = 1$
The state of the s	e) F $(x=y=1 \text{ fails})$ F T $(let y=0)$
	g) T (let x=0)
30,000	7) T (let x=y=o).
	a) Four Only x=2 satisfies x & W and x=4. b) False. x=2 and x=-2 work.
	c) False. No integer satisfies $x^2=3$. d) True. Only $y=0$ satisfies the condition.
	e) True. Only x = 1 satisfies the condition.
and discount of the second	
And the state of t	

(2.)
$$A = \{1,2,3,4,5\}$$
, $B = \{4,5,6,7\}$

(a) $A \cup B = \{1,2,3,4,5\}$, $B = \{4,5,6,7\}$

(b) $A \cap B = \{4,5\}$

(c) $A \setminus B = \{1,2,3\}$

(d) $B \setminus A = \{6,7\}$

(e) $A \setminus B = \{1,2,3,6,7\}$

(f) $A \times B = \{1,2,3,6,7\}$

(g) $A \setminus B = \{1,4,1,1,5\}$, $(1,6)$, $(1,1,1,1,1)$, $(1,2,1)$, $(1,2,1)$, $(1,2,1)$, $(1,3,1)$, $(1,4,1)$

(2) X EANB so X EA and X EB

M X EB and X EA so X EBNA.

therefore $X \in B$ or $X \notin A$ so $X \in B \cup A$. Similarly $X \in B \cup A$ implies $X \notin A \cup B$.


```
· ceres:
    a) x eA, x eB, x eC
    b) x €A, x €B, X \ C
     c) x \in A, x \notin B, x \in C
     d) x \in A, x \notin B, x \notin C
    e) \times AA, \times BX \in C
       (note if x & A, x is forced to be in BDC so XEB and xec)
     do case a) X E A UB and X E A UC so
                                                        x e(AUB) / (AUC).
      In case b) XEAUB and XEAUC so
                                                       X E (AUB) N (AUC).
      In case c) X E AUB and X E AUC so X E (AUB) (AUC)
      dn cased) x EAUB and x EAUC 50 X E (AUB) D (AUC)
      de case e) XEAUB and XEAUC SO
                                                       X E (AUB) ) (AUC).
      dn all cases X E (AUB) N (AUC).
    Now let y \in (A \cup B) \cap (A \cup C)
so y \in A \cup B and y \in A \cup C.
        of y \in A then y \in AU(B \cap C).

If y \notin A then y \in B (because y \in AUB).

Yes, y \notin C because y \notin AU(B \cap C).

No y \notin A, y \notin B \cap C so y \notin AU(B \cap C).
        No we conclude AU(BUC) = (AUB) \cap (AUC).
(A)B)U(A)C) = A)(B)dC).
 Let x \in A \cap (BNC), x \in A and (x \in B \ or \ x \in C).
   By Thm 7.2
(x \in A) \wedge ((x \in B) \vee (x \in C)) = ((x \in A) \wedge (x \in B)) \vee ((x \in A) \wedge (x \in C))
       so XEADB or XEADC.
                     X E (ANB) U (ANC).
```

```
Now let ye (A)B) U(A)C)
       Then (y & A and y & B) or (y & A and y & C)
       So by Thm 7.2
                (y EA ) and (y EB or y EC)
             no y ∈ A O (BUC).
     (Note Thm 7.2 could have been used for all parts, I used different techniques on the different parts to illustrate different ways you could have proved it.
12.9 Let's disprove it.
Let A = \{1,2,3\}, B = \{1,2\} and C = \{4,5\}
        then | AUBUC = | \(\xi_1, 2, 3, 4, 5\) = 5
        but LA = 3, 18 = 2 and | c = 2
         50 |A|+|B|+|c|=7 +5.
 (12.12) Let's disprove it:
         A= {13 = B is a coulterexample because
           AAB=0 50 /AAB1=0
         1A + 1B) - 1AAB) = 1+1-1=1 #0.
(12.21) a) A = \{1\}, C = \{1\}, B = \{2\}
         A-(B-C)=\{1\}-\{2\}-\{1\}=\{1\}-\{2\}=\{1\}
        (A-B)-C=(\{1\}-\{2\})-\{1\}=\{1\}-\{1\}=\emptyset
      So they are different
```

b) (A-B)-c=(A-c)-BLet's prove it: Let XE(A-B)-C no x ∈ A \B and x ∉ C $50 \times A$ and $X \notin B$ and $X \notin C$ 50 (XEA and X&C) and X&B SO XEAIC and X & B So XE (A)C) 1 B . Now let y E(AC) \ B. To yEAC and y &B 50 y EA and y &C and y &B.
so (y EA and y &B) and y &C 50 y E A 1B and y & C 50 y E(A 1B) 1C A c) Let A= C= {13, B= {1,23. $A \cup B = \{1, 2\}$ $A \cup B - C = \{2\}$. $(A - C) \cap (B - C) = \emptyset \cap (B - C) = \emptyset \neq \{2\}$ So they are not equal. d) Let $B = \frac{21}{23}$ and $C = \frac{235}{1123}$ then $A = \frac{21}{25}$ and $A \cup C = \frac{21}{23}$ $\neq B$. So again, not equale) Counter example: A={1,29, C={19=7 B= AUC={1,25. BIC= \$25 # \$1,23=A.

```
(12.30) A, B, C are sets.
    (a) = (3)
         Let x & A x (BUC)
           then x = (a, b) where a EA and b EBUC.
            lo b∈B or b∈C.
      Therefore (a & A and b & B) or (a & A and b & C)
        Therefore (a, b) e (A x B) V (A x C).
       (2=)
         Let X \in (A \times B) V (A \times C)
           Therefore x=(a,b) where (a & A and b & B)
                             or (a EA and bEC)
       (a EA and b EB) or (a EA and b EC)
       translates in Boolean algebra to
       (aEA) 1 (bEB) ) v ((aEA) 1 (bEC))
            (aeA) (beB v bec)
        so a EA and (b + B or b ∈ C)
           50 (a,b) € A×(BUC)
                  X E A X (BUC) N
(c) (=)
        Let x & A × (B \ C).
             Let x=(a,b).
        Then afA and b+B\C
            so a EA and (b+B and b & C)
           so a EA and b & B and b & C
            so (a \in A \text{ and } b \in B) and (a \in A \text{ and } b \notin C)
           50 (a,b) € (A×B) \ (A×C)
                       X \in (A \times B) \setminus (A \times C).
```

(E) Yet $x \in (A \times B) \setminus (A \times C)$ Yet x = (a,b)so $x \in (A \times B)$ and $x \notin (A \times C)$ Aing $x \in A \times B$ then $a \in A$ and $b \in B$. Aing $a \in A$ and $(a,b) \notin A \times C$ then $b \notin C$. Therefore $(a \in A \text{ and } b \in B)$ and $(a \in A \text{ and } b \notin C)$ Therefore (atA) and (bEB and b&C) so $(ab) \in A \times (B \setminus C)$ 50 x GAx(B)C) W