Homework 2a Solutions Math 230

10.12: Let $C = \{x \in \mathbb{Z} : x | 12\}$ and let $D = \{x \in \mathbb{Z} : x | 36\}$. Prove that $C \subseteq D$.

Proof. Let $c \in C$. Then c|12, so there exists an integer k such that 12 = kc. Since 12 = kc, then 36 = 3kc = (3k)c = mc. Since $k \in \mathbb{Z}$, then $m = 3k \in \mathbb{Z}$, so 36 is a multiple of c, so $c \in D$. Therefore $C \subseteq D$.

10.13: Generalize the previous problem. Let c and d be integers and let $C = \{x \in \mathbb{Z} : x | c\}$ and $D = \{x \in \mathbb{Z} : x | d\}$.

Find and prove necessary and sufficient conditions for $C \subseteq D$.

Proof. Suppose $C \subseteq D$. Note that $c \in C$ because c|c. Since $C \subseteq D$, then $c \in D$. Therefore c|d. So a necessary condition for $C \subseteq D$ is that c|d.

Now suppose c|d. Let $x \in C$. Since $x \in C$, then x|c, so c = kx for some integer k. We also know that c|d, so d = mc for some integer m. Since d = mc and c = kx, then d = mkx = (mk)x. Since mk is an integer, then x|d. Therefore $x \in D$. So c|d implies $C \subseteq D$, so c|d is a sufficient condition for $C \subseteq D$.

In summary $C \subseteq D$ if and only if c|d.