Homework 2a Solutions
 Math 230

10.12: Let $C=\{x \in \mathbb{Z}: x \mid 12\}$ and let $D=\{x \in \mathbb{Z}: x \mid 36\}$. Prove that $C \subseteq D$.

Proof. Let $c \in C$. Then $c \mid 12$, so there exists an integer k such that $12=k c$. Since $12=k c$, then $36=3 k c=(3 k) c=m c$. Since $k \in \mathbb{Z}$, then $m=3 k \in \mathbb{Z}$, so 36 is a multiple of c, so $c \in D$. Therefore $C \subseteq D$.
10.13: Generalize the previous problem. Let c and d be integers and let $C=\{x \in \mathbb{Z}: x \mid c\}$ and $D=\{x \in \mathbb{Z}: x \mid d\}$.

Find and prove necessary and sufficient conditions for $C \subseteq D$.
Proof. Suppose $C \subseteq D$. Note that $c \in C$ because $c \mid c$. Since $C \subseteq D$, then $c \in D$. Therefore $c \mid d$. So a necessary condition for $C \subseteq D$ is that $c \mid d$.

Now suppose $c \mid d$. Let $x \in C$. Since $x \in C$, then $x \mid c$, so $c=k x$ for some integer k. We also know that $c \mid d$, so $d=m c$ for some integer m. Since $d=m c$ and $c=k x$, then $d=m k x=(m k) x$. Since $m k$ is an integer, then $x \mid d$. Therefore $x \in D$. So $c \mid d$ implies $C \subseteq D$, so $c \mid d$ is a sufficient condition for $C \subseteq D$.

In summary $C \subseteq D$ if and only if $c \mid d$.

