(24.0) a Niles, it is a function.
2) domain $=\{1,3\}$

$$
\text { image }=\{2,4\}
$$

3) $[t$ is in.
4) Inverse is $\{(2,1),(4,3)\}$.
b) 1) Yes
5) daman: \mathbb{Z}
image: $\{y \in \mathbb{Z} \mid y=2 x$ for $x \in \mathbb{Z}\}$, even integer.
6) Yes.
7) Inverse:

$$
\{(2 x, x) \quad \mid x \in \mathbb{Z}\}
$$

c) il yes.
2) domain: \mathbb{Z}
image: \mathbb{Z}
3) Yes.
4) The same function, ie. $\{(-x, \mathbb{Q}) \mid x \in \mathbb{Z}\}$.
d) NO.

Because if $x=0$, there is not a unique y.
e) 1 yes
2) domain: \mathbb{Z}
image: $\left\{x^{2}: x \in \mathbb{Z}\right\}$
3) No becuure $(-2)^{2}=2^{2}$.
f) i) Yes
2) domain: ϕ image: \varnothing
3) yes
4) \varnothing
g) 1) No because there are 2 's's sometimes Example $\left(\frac{3}{5}\right)^{2}+\left(\frac{-4}{5}\right)^{2}=1$
and $\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=1$
so for $x=\frac{3}{5}$ there ane 2 possible y 's $y=\frac{4}{5}$ and $y=-\frac{4}{5}$.
h) 1) No because if $x=1$ and ontege y works, so there's not a unique y.
i) 1) Yes
2) dom:N
image: IN
3) Yes.
4) $\{(x, x) \mid x \in \mathbb{Z}\}$. (Itself is the inverse).
j) 1) No because is $x=1$ then y could be or 1

$$
\binom{1}{0}=\binom{1}{1}=1
$$

(24.2)

$$
\text { 2) } \begin{aligned}
& f:\{1,2,3\} \rightarrow\{4,5\} \\
& f=\{(1,4),(2,4),(3,4)\} \\
& f=\{(1,4),(2,4),(3,5)\} \\
& f=\{(1,4),(2,5),(3,4)\} \\
& f=\{(1,4),(2,5),(3,5)\}) \\
& f=\{(1,5),(2,4),(3,4)\} \\
& f=\{(1,5),(2,4),(3,5)\} \\
& f=\{(1,5),(2,5),(3,4)\} \\
& f=\{(1,5),(2,5),(3,5)\}
\end{aligned}
$$

None of the function is

$$
i-1
$$

The onto function are circled.
(24.5 a) $f(z)=-2$
b) $f(z)=3$
c) $f(z)=(z+1)^{z+1}=3^{3}=27$
d) $f(z)=1$
e) $f(z)=z!=2$
(24.6) a
b) $\mathbb{N} \cup\{0\}$
c) \mathbb{Z}
(all integers)
d)

$$
\begin{array}{rrr}
y=\frac{1}{1+x^{2}} & 1+x^{2}=\frac{1}{y} & x^{2}=\frac{1}{y}-1 \\
x^{2} \geq 0 & \text { so } \quad \frac{1}{y}-1 \geq 0 \\
& \text { so } & \frac{1}{y} \geq 1 \\
\frac{1}{1+x^{2}} \geq 0 & \text { so } & y \leq 1
\end{array}
$$

Therefore the image is $\{y \in \mathbb{R} \mid 0<y \leq 1\}$ i.e. the interval $(0,1]$.
e) $\{y \in \mathbb{R} \mid y \geq 0\}=[0, \infty)$.
f) $[-1,1]$.
(24.8) a) $(1,6) \quad\binom{$ other possible answers aet }{$(1,71,(2,6),(2,7),(3,5),(3,7)}$
b) $(4,5) \quad($ other answers are $(4,6))$.
C) $(4,7)$ (no other possible answer).
(24.14)
a) $f: \mathbb{Z} \rightarrow \mathbb{Q}, f(x)=2 x$
is $1-1$ because if $f(a)=f(b)$
then $2 a=2 b$
is not onto because there is no $x^{t^{2}}$ s. $t f(x)=1$.
b) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=10+x$
is $1-1$ because if $f(a)=f(b)$ them

$$
10+a=10+b
$$

$$
\text { so } a=b \text {. }
$$

is onto because if $y \in \mathbb{Z} f(y-10)=10+(y-10)=y$ and $y-10 \in \mathbb{Z}$.
c) $f: \mathbb{N} \rightarrow \mathbb{N}, \quad f(x)=10+x$
is $1-1$ because if $f(a)=f(b)$ then

$$
10+a=10+b
$$

$$
\text { so } a=b \text {. }
$$

is not onto became there is no $x \in N$ s.t

$$
f(x) \geq 1
$$

dncleed $f(-9)=1$ but $-9 \notin \mathbb{N}$.
d) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)= \begin{cases}x / 2 & \text { if } x \text { is even } \\ \frac{x-1}{2} & \text { if } x \text { is odd }\end{cases}$
f is not $1-1$ because
$f(0)=0$ amd $f(1)=0$,
f is onto because in $y \in \mathbb{Z}$ then $f(2 y)=y$.
e) $f: Q \rightarrow Q \quad f(x)=x^{2}$ and $2 y \in \mathbb{Z}$.
f is not $1-1$ because $f(-1)=f(1)$.
f is not onto because $f(x) \geq 0$ so there is no $x \in \mathbb{Q}$

$$
\text { s.t } f(x)=-1
$$

(24.16) Three things to prove. Let $f: A \rightarrow B$
A, B finite sets

1) of f is H and f is onto $\Rightarrow|A|=|B|$
2) of f is H and $|A|=\mid B \bar{B} \Rightarrow f$ is onto.
3) If f is onto and $|A|=|B| \Rightarrow f$ is $1-1$.

Lets prove them in that order

1) Since f is $1-1 \quad|B| \geq|A|$.

Since f is onto $|A| \geq|B|$.
Therefore $\quad|A|=|B|$.
2) Sine f is $1-1,|\operatorname{Im} f|=|A|$
(because for every element in A, there's exactly ore element in In f)
Since $|A|=|B|$ then \mid Imf $f|=|B|$.
Sine Imf $\leq B$ and $\operatorname{Im} f|=|B|$
then $\operatorname{Im} t=B$.
Therefore f is onto.
3) Since f is onto In $f=B$ so \mid In $f|=|B|=|A|$.

Since $|A|=|\operatorname{In} f|$
then f is $1-1$

Homework 9 Solutions Math 230

24.17: Let $A=\mathbb{N}$. Let

$$
f(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n-1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Then $f: A \rightarrow A$ is onto because if $m \in \mathbb{N}$, then $f(2 m)=m$ and f is not one-to-one because $f(3)=f(2)$ (both equal 1).

Let $g: A \rightarrow A$ be defined by $g(n)=2 n$. Then g is one-to-one because if $g(m)=g(r)$, then $2 m=2 r$ so $m=r . g$ is not onto because there is no integer n such that $g(n)=1$. Indeed if $g(n)=1$, then $2 n=1$, so $n=1 / 2$, but $1 / 2 \notin \mathbb{N}$.
f and g don't contradict Exercise 24.16 because the set $A=\mathbb{N}$ is infinite and the exercise is true for finite sets.
24.20: The answer is

$$
\binom{n}{k}
$$

The reason is that if there are k elements of A that map to 1 , then we must choose the k elements of A which map to 1 and all other elements of A map to 0 . There are $\binom{n}{k}$ ways of choosing which elements of A map to 1 . The elements not chosen to map to 1 , must map to 0 . So each choice of k elements of A represents a unique function $f: A \rightarrow\{0,1\}$ that has exactly k elements $a \in A$ satisfying $f(a)=1$ (and hence $n-k$ elements b such that $f(b)=0$).

