Induction Proof Practice

1. Prove that for any positive integer \(n \),

\[
1 + 3 + 6 + \cdots + \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{6}.
\]

2. Prove that for any positive integer \(n \),

\[
2^n > n.
\]

3. Prove by induction that the number of subsets of a set with \(n \) elements is \(2^n \).

4. Prove that every positive integer \(n > 1 \), has a prime divisor.

5. Evaluate the sum

\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{999 \cdot 1000}.
\]

Solutions

1. \textit{Proof.} For \(n = 1 \), the left side is 1 and the right side is \(\frac{1 \cdot 2}{6} = 1 \).

Suppose the statement is true for \(n = k \), namely, suppose that for some \(k \geq 1 \), we have

\[
1 + 3 + \cdots + \frac{k(k+1)}{2} = \frac{k(k+1)(k+2)}{6}.
\]

Now, consider the case \(n = k + 1 \). We have

\[
1 + 3 + \cdots + \frac{k(k+1)}{2} + \frac{(k+1)(k+2)}{2} = \left(1 + 3 + \cdots + \frac{k(k+1)}{2}\right) + \frac{(k+1)(k+2)}{2} = \frac{k(k+1)(k+2)}{6} + \frac{(k+1)(k+2)}{2} = \frac{(k+1)(k+2)}{6} + \frac{2}{6(k+3)} = \frac{(k+1)(k+2)}{6} \cdot \frac{3}{(k+3)} = \frac{(k+1)(k+2)(k+3)}{6}.
\]

Therefore, we’ve shown that when it’s true for \(k \), it implies it’s true for \(k + 1 \). We’ve finished the proof by induction.

\(\square \)

2. \textit{Proof.} The base case is \(n = 1 \) and we can see that \(2^1 = 2 > 1 \). Therefore it’s true for \(n = 1 \).

Let’s assume that it’s true for \(n = k \), namely, suppose \(2^k > k \). We have \(2^{k+1} = 2 \cdot 2^k > 2 \cdot k \geq k + 1 \) whenever \(2k \geq k + 1 \), which is true for \(k \geq 1 \). Therefore, \(2^{k+1} > k + 1 \) and hence we’ve proved the general statement by induction.

\(\square \)
3. **Proof.** For \(n = 0 \), we have that the only subset of a set with zero elements is the empty set. Therefore, it has one subset. But \(2^0 = 1 \), so the statement is true for \(n = 0 \). For \(n = 1 \), let \(A = \{a\} \) be our set with one element. Then the only subsets are \(\emptyset \) and \(\{a\} \). Therefore, it has two subsets. Since \(2^1 = 2 \), we have that the statement to be proved is true for \(n = 1 \). We have our base case.

Now, for an integer \(k \geq 1 \), suppose that the number of subsets of a set with \(k \) elements is \(2^k \). This will be the induction hypothesis.

Suppose \(A = \{a_1, a_2, \ldots, a_k, a_{k+1}\} \) is a subset with \(k+1 \) elements. Let’s consider all the subsets. Let \(T \) be the set of subsets of \(A \) that contain \(a_{k+1} \) and \(U \) be the set of subsets that don’t contain \(a_{k+1} \). Note that the set of subsets of \(A \) is the disjoint union of \(T \) and \(U \). We’re going to show that \(|T| = |U| = 2^k \). First, let’s consider \(U \). The subsets of \(A \) that don’t contain \(a_{k+1} \) are the subsets of \(\{a_1, a_2, \ldots, a_k\} \). By the induction hypothesis, there are \(2^k \) of these. Now consider the subsets of \(A \) that contain \(a_{k+1} \). Once you ignore that term, the rest of the subset must be a subset of \(\{a_1, a_2, \ldots, a_k\} \), so by the induction hypothesis there are \(2^k \) of these. Therefore, the number of subsets of \(A \) is \(|T| + |U| = 2^k + 2^k = 2^{k+1} \), which is what we wanted to prove.

\[\square \]

4. **Proof.** For \(n = 2 \), the prime divisor is 2. Suppose that all numbers \(1 < i \leq k \) have a prime factor. We want to show that \(k + 1 \) also has a prime factor. If \(k + 1 \) is prime, then it has a prime factor (itself). If \(k + 1 \) is not prime, then there exist \(a, b \) satisfying \(1 < a \leq b < k + 1 \) such that \(k + 1 = ab \). But then \(1 < a \leq k \). By the strong induction hypothesis, \(a \) has a prime factor \(p \). But then \(p|a \) and \(a|k + 1 \), so \(p|k + 1 \). Therefore \(k + 1 \) has a prime factor. Therefore, by strong induction, all integers greater than 1 have a prime factor.

\[\square \]

5. Let’s find a pattern:

\[
\begin{align*}
\frac{1}{1 \cdot 2} &= \frac{1}{2} \\
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} &= \frac{2}{3} \\
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} &= \frac{3}{4} \\
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} &= \frac{4}{5}.
\end{align*}
\]

It seems the pattern is that the sum up to \(\frac{1}{(k-1)k} \) is \(\frac{k-1}{k} = 1 - \frac{1}{k} \). This suggests the answer to the question is \(\frac{999}{1000} \). Let’s prove that the pattern persists by using induction:

Proof. The base case are the examples listed above. As our induction hypothesis suppose

\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{(k-1)k} = \frac{k-1}{k}.
\]
Now, consider the next term:

\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{(k-1)k} + \frac{1}{k(k+1)} = \frac{k-1}{k} + \frac{1}{k(k+1)}
\]

\[
= \frac{1}{k(k+1)}((k-1)(k+1) + 1)
\]

\[
= \frac{1}{k(k+1)}(k^2 - 1 + 1)
\]

\[
= \frac{k}{k(k+1)}
\]

\[
= \frac{k}{k+1}.
\]

This completes the proof by induction. \(\square\)