Math 230 Midterm #1
September 30, 2013

Instructions: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

• You may NOT use a calculator.

• Show all of your work.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>
Official Cheat Sheet

1. Let A be a set. Then 2^A is the set of all subsets of A. For example, if $A = \{1, 2\}$, then $2^A = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

2. $|A|$ is the number of elements of A. A useful formula is: $|A \cup B| = |A| + |B| - |A \cap B|$ if A and B are finite sets. Another useful formula is $|2^A| = 2^{|A|}$ when A is finite.

3. Here are some Boolean algebra properties (which can be translated easily to set properties by equating \lor with \cup and \land with \cap):
 - $x \land y = y \land x$ and $x \lor y = y \lor x$.
 - $(x \land y) \land z = x \land (y \land z)$ and $(x \lor y) \lor z = x \lor (y \lor z)$.
 - $x \land (y \lor z) = (x \land y) \lor (x \land z)$ and $x \lor (y \land z) = (x \lor y) \land (x \lor z)$.

4. \mathbb{Z} is the set of integers. $\mathbb{N} = \{1, 2, 3, \ldots\}$ is the set of positive integers.

5. Let A and B be sets. Then
 - $A \cup B = \{x | x \in A \text{ or } x \in B\}$,
 - $A \cap B = \{x | x \in A \text{ and } x \in B\}$,
 - $A - B = \{x | x \in A \text{ and } x \notin B\}$,
 - $A \Delta B = (A - B) \cup (B - A)$,
 - $A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$.

6. Let a and b be integers.
 - a is even if there exists an integer c such that $a = 2c$.
 - a is odd if there exists an integer c such that $a = 2c + 1$.
 - We say $a | b$ (a divides b) if there exists an integer c such that $b = ac$.
 - a is composite if $|a| > 1$ and there exists c such that $1 < c < |a|$ and $c | a$.
 - a is prime if $a > 1$ and a is not composite.
 - a is perfect if a equals the sum of its positive divisors less than a.
1. True or False (Just answer true or false, you don’t need to explain your answer):

(a) [2 points] -23 is prime.

(b) [2 points] 7|1001.

(c) [2 points] The sum of two odd numbers is odd.

(d) [2 points] T ⊆ A if and only if T ∈ 2^A.

(e) [2 points] ∅ ⊆ {∅}.

(f) [2 points] Let \(n = 2^{p-1}(2^p - 1) \) where \(2^p - 1 \) is prime. \(n \) is a perfect number.

(g) [2 points] 2 ∈ \{1, 2, {1, 2}\}.

(h) [2 points] If \(x^2 < 0 \), then \(x \) is a perfect number.

(i) [2 points] Two right triangles that have hypotenuses of the same length have the same area.

(j) [2 points] \(\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, xy = 1 \).
2. For the following pairs of statements \(A, B \), write \(a \) if the statement “If \(A \), then \(B \)” is true, write \(b \) if the statement “If \(B \), then \(A \)” is true and write \(c \) if the statement ”\(A \) if and only if \(B \)” is true. You should write all that apply.

(a) [5 points] \(A: x > 0. \) \(B: x^2 > 0. \)

(b) [5 points] \(A: \) Ellen is a grandmother. \(B: \) Ellen is female.

(c) [5 points] \(A: x \) is odd. \(B: x + 1 \) is even.

(d) [5 points] \(A: \) Polygon \(PQRS \) is a rectangle. \(B: \) Polygon \(PQRS \) is a square.
3. Proofs:

(a) [5 points] Using the definition of odd integer provided in the “cheat sheet”, prove that if \(n \) is an odd integer, then \(-n\) is also an odd integer.

(b) [5 points] Let \(a, b \) and \(d \) be integers. Suppose \(b = aq + r \) where \(q \) and \(r \) are integers. Prove that if \(d|a \) and \(d|b \), then \(d|r \).
4. Find counterexamples to disprove the following statements:

 (a) [5 points] An integer x is positive if and only if $x + 1$ is positive.

 (b) [5 points] An integer is a *palindrome* if it reads the same forwards and backwards when expressed in base 10. For example, 1331 is a *palindrome*. All *palindromes* are divisible by 11.

 (c) [5 points] If a, b and c are positive integers then $a^{(b^c)} = (a^b)^c$.

 (d) [5 points] Let A, B and C be sets. Then $A - (B - C) = (A - B) - C$.
5. Boolean Algebra

(a) [5 points] Prove or disprove that the Boolean expressions \(x \to \neg y \) and \(\neg(x \to y) \) are logically equivalent.

(b) [5 points] The expression \(x \to y \) can be rewritten in terms of only the basic operations \(\land, \lor \) and \(\neg \); that is, \(x \to y = (\neg x) \lor y \). Find an expression that is logically equivalent to \(x \leftrightarrow y \) that uses only the operations \(\land, \lor, \neg \) and prove that your expression is correct.
6. Consider the following proposition. Let N be a two-digit number and let M be the number formed from N by reversing the digits of N. Now compare N^2 and M^2. The digits of M^2 are precisely those of N^2, but reversed. For example:

$$
10^2 = 100 \quad \quad 01^2 = 001 \\
11^2 = 121 \quad \quad 11^2 = 121 \\
12^2 = 144 \quad \quad 21^2 = 441 \\
13^2 = 169 \quad \quad 31^2 = 961
$$

and so on. Here is a proof of the proposition:

Proof. Since N is a two-digit number, we can write $N = 10a + b$ where a and b are the digits of N. Since M is formed from N by reversing digits, $M = 10b + a$.

Note that $N^2 = (10a + b)^2 = 100a^2 + 20ab + b^2 = (a^2) \times 100 + (2ab) \times 10 + (b^2) \times 1$, so the digits of N^2 are, in order, $a^2, 2ab, b^2$.

Likewise, $M^2 = (10b + a)^2 = (b^2) \times 100 + (2ab) \times 10 + (a^2) \times 1$, so the digits of M^2 are, in order, $b^2, 2ab, a^2$, exactly the reverse of N^2, which completes the proof.

(a) [5 points] Prove that the proposition is false.

(b) [5 points] Explain why the proof is invalid.
7. Counting

(a) [5 points] In how many ways can we make a list of three integers \((a, b, c)\) where \(0 \leq a, b, c \leq 9\) such that \(a + b + c\) is even?

(b) [5 points] Evaluate \(\prod_{k=0}^{100} \frac{k^2}{k + 1}\).
8. Let $A \times B = \{(1, 2), (1, 3), (1, 7), (2, 2), (2, 3), (2, 7)\}$.

(a) [5 points] What is $A \cup B$?

(b) [5 points] What is $A \cap B$?

(c) [5 points] What is $A - B$?

(d) [5 points] What is $A \Delta B$?
9. [10 points] Let A, B and C be sets. Prove that

$$(A \cup B) - C = (A - C) \cup (B - C).$$