Math 230 Midterm #3
April 4, 2014

Instructions: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

• You may NOT use a calculator.

• Show all of your work.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
1. True or False:
 For the following suppose that A, B and C are sets.

 (a) [2 points] Every function is a relation.

 (b) [2 points] Every relation is a function.

 (c) [2 points] The Pigeonhole principle can be stated as: “Let A and B be finite sets and let $f : A \to B$. If $|A| > |B|$, then f is not one-to-one.”

 (d) [2 points] The function $f = \{(1, 1), (2, 1), (3, 4)\}$ is a function $f : \{1, 2, 3, 4\} \to \{1, 4\}$.

 (e) [2 points] $f(x) = 7x - 12$ is a bijection from $(0, 1)$ to $(-12, -5)$.

 (f) [2 points] If $f : A \to B$ is one-to-one and $g : B \to C$ is one-to-one, then $g \circ f$ is one-to-one.

 (g) [2 points] Let $f : A \to B$. If f is one-to-one, then f^{-1} is a function and $f^{-1} : B \to A$.

 (h) [2 points] If $f : A \to B$ is a bijection, then $f \circ f^{-1} = id_A$.

 (i) [2 points] If $f = id_A$, $g = id_B$ such that $A \subseteq B$ and $A \neq B$, then $f \circ g$ is undefined.

 (j) [2 points] If there are 13 people in a room, then at least two of them were born on the same month (not necessarily on the same year).
2. For each of the following statements, write the first sentences of a proof by contradiction:

(a) [2 points] If a square of a rational number is an integer, then the rational number must also be an integer.

(b) [2 points] Distinct circles intersect in at most two points.

(c) [2 points] If the sum of two primes is prime, then one of the primes must be 2.

(d) [2 points] There are infinitely many primes.

(e) [2 points] Consecutive integers cannot both be even.
3. Prove the following statements:

(a) [5 points] If the sum of two primes is prime, then one of the primes must be two.

(b) [5 points] Let A and B be sets such that $A \cap B = \emptyset$. Then $(A \times B) \cap (B \times A) = \emptyset$.
4. Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f(x) = |x|$ and let $g : \mathbb{N} \to \mathbb{N}$ be defined by $g(x) = |x|$.

(a) [5 points] Prove or disprove: f is one-to-one.

(b) [5 points] Prove or disprove: f is onto.
(c) [5 points] Prove or disprove: g is one-to-one.

(d) [5 points] Prove or disprove: g is onto.
5. (a) [5 points] Prove that if \(n \geq 10^{10} \) is a positive integer, then two of its digits must be the same.

(b) [5 points] The squares of an \(8 \times 8 \) chess board are colored black or white (not necessarily the same way a usual chess board is colored). We call a group of squares an L-region if it consists of a corner square, the two squares above it and the two squares to its right (so it has the shape of an L with equal width and height). Prove that no matter how we color the chess board, there must be two L-regions that are colored identically.
6. [10 points] Let \(A = \{1, 2, 3, 4, 5\} \) with \(f : A \to A \), \(g : A \to A \), and \(h : A \to A \). We are given the following:

- \(f = \{(1, 2), (2, 3), (3, 1), (4, 3), (5, 5)\} \),
- \(h = \{(1, 3), (2, 3), (3, 2), (4, 5), (5, 3)\} \), and
- \(h = f \circ g \).

Find all possible functions \(g \) that satisfy these conditions.
7. [10 points] Let A, B and C be sets. Prove that if $f : A \rightarrow B$ and $g : B \rightarrow C$ are bijections, then $g \circ f$ is a bijection.