
Homework 7 Solutions

Math 230

25.6: If two numbers match zeroes, then they satisfy that the zeroes of both numbers are
in the same positions among the 9 digits of the numbers. There are 512 configurations of 0’s
and not 0’s (indeed each digit is either a 0 or not a 0 and there are 9 digits, hence 29 = 512
configurations). Since we have 513 numbers, by the Pigeonhole principle at least two of them
have the same configuration of 0’s. Hence they match zeroes.

25.9: Break the square into 4 squares of side length 1/2 × 1/2 (i.e. draw the lines con-
necting the midpoints of opposing sides of the square). Since there are 5 points, at least two
of them must land in the same 1/2×1/2 square. The farthest apart two points can be inside
the square is if they are in opposing corners, hence√(
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+
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apart. This is what we wanted to prove.

25.16: For this exercise we must take N to be {0, 1, 2, . . .} as opposed to our usual def-
inition we use in class. It’s easy to change the function to work out in our case too (add one
to −n/2 and it still is a bijection while working from our usual definition of N).

Without further ado, let’s prove the statement as written in the book. Let’s start by
proving f is onto:

First note that f(0) = 0, hence 0 ∈ Im(f). Now, if m < 0 is an integer, then n = −2m
is a positive integer, so

f(n) = f(−2m) = −−2m

2
= m.

Therefore m ∈ Im(f), i.e., all negative integers are in the image of f .
If m > 0 is an integer, then m ≥ 1 so 2m− 1 ≥ 1, so n = 2m− 1 is in N and

f(n) = f(2m− 1) =
2m− 1 + 1

2
= m.

Therefore m ∈ Im(f), i.e., all positive integers are in the image of f .
Therefore all integers m are in the image of f , showing that f is onto Z.
Now, let’s prove f is one-to-one:
Suppose f(n) = f(m). Then we have four possibilities:

1. f(n) = −n/2 and f(m) = −m/2. Then −n/2 = −m/2 so m = n.
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2. f(n) = −n/2 and f(m) = (m + 1)/2. Since n and m are in N, then

m + 1

2
> 0 ≥ −n

2
,

so f(m) > f(n), contradicting the assumption that f(n) = f(m).

3. f(n) = (n + 1)/2 and f(m) = −m/2. Since n and m are in N, then

n + 1

2
> 0 ≥ −m

2
,

therefore f(n) > f(m) contradicting the assumption f(n) = f(m).

4. f(n) = (n + 1)/2 and f(m) = (m + 1)/2. Then (n + 1)/2 = (m + 1)/2, so n = m.

Looking at the possibilities we conclude that if f(n) = f(m) then n = m which implies that
f is one-to-one.

Since f is onto and f is one-to-one, f is a bijection.

25.18: Proving this would be a generalization of the Pigeonhole Principle to infinite sets
(the Pigeonhole principle as stated before was only for finite sets).

Let’s prove it by contradiction using Cantor’s Theorem. Let A be non-empty and f :
2A → A. For the sake of contradiction suppose that f is one-to-one. Since f is one-to-one,
then f has an inverse f−1 : Im(f)→ 2A that is onto. But the image of f is a subset of A so
it’s easy to build an onto function g : A → 2A by saying g(a) = f−1(a) for a ∈ Im(f) and
g(a) =whatevs for a 6∈ Im(f). Here’s an example of a function g that works:

g(x) =

{
f−1(x) if x ∈ Im(f)

∅ if x 6∈ Im(f)

Since f−1 is onto and g is an extension of f−1, then g : A → 2A is also onto. However,
Cantor’s theorem states that there are no onto functions from A to 2A. CONTRADICTION!
Hence f is not one-to-one!

Summary of the proof: If f is one-to-one, then f−1 is onto. But then there is an onto
function from A to 2A. This is impossible, hence f is not one-to-one.

26.1:
a) f ◦ g = {(2, 2), (3, 2), (4, 2)} and g ◦ f = {(1, 1), (2, 1), (3, 1)}. g ◦ f 6= f ◦ g.
b) f ◦ g = {(2, 2), (3, 3), (4, 4)} and g ◦ f = {(1, 1), (2, 2), (3, 3)}. g ◦ f = f ◦ g.
c) f ◦ g is undefined. g ◦ f = {(1, 0), (2, 5), (3, 3)}. g ◦ f 6= f ◦ g.
d) f ◦ g = {(1, 4), (2, 4), (3, 1), (4, 1)} and g ◦ f = {(1, 4), (2, 4), (3, 4), (4, 1)}. g ◦ f 6= f ◦ g.
e) f ◦ g = {(1, 4), (2, 5), (3, 1), (4, 2), (5, 3)} = g ◦ f . g ◦ f = f ◦ g.
f)

f ◦ g(x) = f(x2 + 1) = (x2 + 1)2 − 1 = x4 + 2x2,

and
g ◦ f(x) = g(x2 − 1) = (x2 − 1)2 + 1 = x4 − 2x2 + 2.

g ◦ f(0) 6= f ◦ g(0), so g ◦ f 6= f ◦ g.
g)

f ◦ g(x) = f(x− 7) = (x− 7) + 3 = x− 4,
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and
g ◦ f(x) = g(x + 3) = (x + 3)− 7 = x− 4.

Therefore g ◦ f(x) = f ◦ g(x).
h)

f ◦ g(x) = f(2− x) = 1− (2− x) = x− 1,

and
g ◦ f(x) = g(1− x) = 2− (1− x) = x + 1.

g ◦ f(0) 6= f ◦ g(0), so g ◦ f 6= f ◦ g.
i) f ◦ g is undefined because g(−1) = 0 so f(g(−1)) is undefined.

g ◦ f(x) = g

(
1

x

)
=

1

x
+ 1.

Since f ◦ g is undefined, then g ◦ f 6= f ◦ g.
j) Since A 6= B and A ⊆ B, there is an x ∈ B such that x 6∈ A. For this x, g(x) = idB(x) = x,
but f(x) = idA(x) is undefined. Therefore f ◦ g is undefined.

g ◦ f(x) = g(f(x)) = g(idA(x)) = g(x) = idB(x) = x.

Since f ◦ g is undefined, then g ◦ f 6= f ◦ g.

26.7: Let A and B be sets and f : A → B and g : B → A such that g ◦ f = idA and
f ◦ g = idB. We want to prove that f is invertible, i.e, that f is one-to-one. We also want
to prove that g = f−1.

Let’s start by proving that f is one-to-one. Suppose that f(x) = f(y). Then g(f(x)) =
g(f(y)), so g ◦ f(x) = g ◦ f(y), but g ◦ f = idA, so idA(x) = idA(y), and therefore x = y.
Hence f is one-to one, which implies that f is invertible.

Let’s now prove that g = f−1:
We’ll start by proving that f is onto. Let y ∈ B. Since y ∈ B, then g(y) ∈ A. Now

f ◦ g(y) = idB(y) = y and f ◦ g(y) = f(g(y)). So f(g(y)) = y, so f is onto.
Since f is one-to-one, f−1 exists and its domain is the image of f . Since f is onto, the

image of f is B, so f−1 : B → A. Therefore the domain of f−1 equals the domain of g.
Now we just need to prove that for y ∈ B, f−1(y) = g(y). Since f is onto, there exists an

x ∈ A such that f(x) = y. Therefore

f−1(y) = f−1(f(x)) = f−1 ◦ f(x) = idA(x) = x,

and
g(y) = g(f(x)) = g ◦ f(x) = idA(x) = x.

Therefore f−1(y) = g(y). Therefore g = f−1.

26.9: Let A, B, C be sets and f : A→ B and g : B → C.
a) Suppose f and g are one-to-one. Let’s prove g ◦ f is also one-to-one. Suppose

g ◦ f(x) = g ◦ f(y). Then g(f(x)) = g(f(y)). Since g is one-to-one then f(x) = f(y). Since
f is one-to-one then x = y. Hence g ◦ f is one-to-one.

b) Suppose f and g are onto. Let’s prove g ◦ f is onto. Suppose c ∈ C. Since g is onto,
there exists a b ∈ B such that g(b) = c. Since f is onto, there exists an a ∈ A such that
f(a) = b. Therefore g(f(a)) = c. Therefore g ◦ f(a) = c. Therefore g ◦ f is onto.

3



c) Suppose f and g are bijections. Let’s prove g ◦ f is a bijection. Since f and g are
one-to-one, then g ◦ f is one-to-one. Since f and g are onto, then g ◦ f is onto. Since g ◦ f
is one-to-one and onto, then g ◦ f is a bijection.

26.10: The functions in (e) of exercise 26.1 work, i.e., A = {1, 2, 3, 4, 5} with

f = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)},

and
g = {(1, 3), (2, 4), (3, 5), (4, 1), (5, 2)}.

Note that g is not the inverse of f , that neither is the identity and that

f ◦ g = {(1, 4), (2, 5), (3, 1), (4, 2), (5, 3)} = g ◦ f.

You might be wondering “what’s so special about these two functions?” Both of them are
permutations of the set {1, 2, 3, 4, 5}, one of them is a translation by 1 and the other by 2.
So the composition is translating by 3. This kind of construction can be easily generalized
to find many more functions with the property of f ◦ g = g ◦ f . An interesting question is
whether we can characterize all of the pairs of functions (f, g) with such a property.
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