Homework 7 Solutions
 Math 230

25.6: If two numbers match zeroes, then they satisfy that the zeroes of both numbers are in the same positions among the 9 digits of the numbers. There are 512 configurations of 0 's and not 0 's (indeed each digit is either a 0 or not a 0 and there are 9 digits, hence $2^{9}=512$ configurations). Since we have 513 numbers, by the Pigeonhole principle at least two of them have the same configuration of 0 's. Hence they match zeroes.
25.9: Break the square into 4 squares of side length $1 / 2 \times 1 / 2$ (i.e. draw the lines connecting the midpoints of opposing sides of the square). Since there are 5 points, at least two of them must land in the same $1 / 2 \times 1 / 2$ square. The farthest apart two points can be inside the square is if they are in opposing corners, hence

$$
\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{\sqrt{2}}{2}
$$

apart. This is what we wanted to prove.
25.16: For this exercise we must take \mathbb{N} to be $\{0,1,2, \ldots\}$ as opposed to our usual definition we use in class. It's easy to change the function to work out in our case too (add one to $-n / 2$ and it still is a bijection while working from our usual definition of \mathbb{N}).

Without further ado, let's prove the statement as written in the book. Let's start by proving f is onto:

First note that $f(0)=0$, hence $0 \in \operatorname{Im}(f)$. Now, if $m<0$ is an integer, then $n=-2 m$ is a positive integer, so

$$
f(n)=f(-2 m)=-\frac{-2 m}{2}=m .
$$

Therefore $m \in \operatorname{Im}(f)$, i.e., all negative integers are in the image of f.
If $m>0$ is an integer, then $m \geq 1$ so $2 m-1 \geq 1$, so $n=2 m-1$ is in \mathbb{N} and

$$
f(n)=f(2 m-1)=\frac{2 m-1+1}{2}=m .
$$

Therefore $m \in \operatorname{Im}(f)$, i.e., all positive integers are in the image of f.
Therefore all integers m are in the image of f, showing that f is onto \mathbb{Z}.
Now, let's prove f is one-to-one:
Suppose $f(n)=f(m)$. Then we have four possibilities:

1. $f(n)=-n / 2$ and $f(m)=-m / 2$. Then $-n / 2=-m / 2$ so $m=n$.
2. $f(n)=-n / 2$ and $f(m)=(m+1) / 2$. Since n and m are in \mathbb{N}, then

$$
\frac{m+1}{2}>0 \geq-\frac{n}{2}
$$

so $f(m)>f(n)$, contradicting the assumption that $f(n)=f(m)$.
3. $f(n)=(n+1) / 2$ and $f(m)=-m / 2$. Since n and m are in \mathbb{N}, then

$$
\frac{n+1}{2}>0 \geq-\frac{m}{2}
$$

therefore $f(n)>f(m)$ contradicting the assumption $f(n)=f(m)$.
4. $f(n)=(n+1) / 2$ and $f(m)=(m+1) / 2$. Then $(n+1) / 2=(m+1) / 2$, so $n=m$.

Looking at the possibilities we conclude that if $f(n)=f(m)$ then $n=m$ which implies that f is one-to-one.

Since f is onto and f is one-to-one, f is a bijection.
25.18: Proving this would be a generalization of the Pigeonhole Principle to infinite sets (the Pigeonhole principle as stated before was only for finite sets).

Let's prove it by contradiction using Cantor's Theorem. Let A be non-empty and f : $2^{A} \rightarrow A$. For the sake of contradiction suppose that f is one-to-one. Since f is one-to-one, then f has an inverse $f^{-1}: \operatorname{Im}(f) \rightarrow 2^{A}$ that is onto. But the image of f is a subset of A so it's easy to build an onto function $g: A \rightarrow 2^{A}$ by saying $g(a)=f^{-1}(a)$ for $a \in \operatorname{Im}(f)$ and $g(a)=$ whatevs for $a \notin \operatorname{Im}(f)$. Here's an example of a function g that works:

$$
g(x)= \begin{cases}f^{-1}(x) & \text { if } x \in \operatorname{Im}(f) \\ \emptyset & \text { if } x \notin \operatorname{Im}(f)\end{cases}
$$

Since f^{-1} is onto and g is an extension of f^{-1}, then $g: A \rightarrow 2^{A}$ is also onto. However, Cantor's theorem states that there are no onto functions from A to 2^{A}. CONTRADICTION! Hence f is not one-to-one!

Summary of the proof: If f is one-to-one, then f^{-1} is onto. But then there is an onto function from A to 2^{A}. This is impossible, hence f is not one-to-one.

26.1:

a) $f \circ g=\{(2,2),(3,2),(4,2)\}$ and $g \circ f=\{(1,1),(2,1),(3,1)\} . g \circ f \neq f \circ g$.
b) $f \circ g=\{(2,2),(3,3),(4,4)\}$ and $g \circ f=\{(1,1),(2,2),(3,3)\} . g \circ f=f \circ g$.
c) $f \circ g$ is undefined. $g \circ f=\{(1,0),(2,5),(3,3)\} . g \circ f \neq f \circ g$.
d) $f \circ g=\{(1,4),(2,4),(3,1),(4,1)\}$ and $g \circ f=\{(1,4),(2,4),(3,4),(4,1)\} . g \circ f \neq f \circ g$.
e) $f \circ g=\{(1,4),(2,5),(3,1),(4,2),(5,3)\}=g \circ f . g \circ f=f \circ g$.
f)

$$
f \circ g(x)=f\left(x^{2}+1\right)=\left(x^{2}+1\right)^{2}-1=x^{4}+2 x^{2}
$$

and

$$
g \circ f(x)=g\left(x^{2}-1\right)=\left(x^{2}-1\right)^{2}+1=x^{4}-2 x^{2}+2 .
$$

$g \circ f(0) \neq f \circ g(0)$, so $g \circ f \neq f \circ g$.
g)

$$
f \circ g(x)=f(x-7)=(x-7)+3=x-4,
$$

and

$$
g \circ f(x)=g(x+3)=(x+3)-7=x-4
$$

Therefore $g \circ f(x)=f \circ g(x)$.
h)

$$
f \circ g(x)=f(2-x)=1-(2-x)=x-1
$$

and

$$
g \circ f(x)=g(1-x)=2-(1-x)=x+1
$$

$g \circ f(0) \neq f \circ g(0)$, so $g \circ f \neq f \circ g$.
i) $f \circ g$ is undefined because $g(-1)=0$ so $f(g(-1))$ is undefined.

$$
g \circ f(x)=g\left(\frac{1}{x}\right)=\frac{1}{x}+1
$$

Since $f \circ g$ is undefined, then $g \circ f \neq f \circ g$.
j) Since $A \neq B$ and $A \subseteq B$, there is an $x \in B$ such that $x \notin A$. For this $x, g(x)=i d_{B}(x)=x$, but $f(x)=i d_{A}(x)$ is undefined. Therefore $f \circ g$ is undefined.

$$
g \circ f(x)=g(f(x))=g\left(i d_{A}(x)\right)=g(x)=i d_{B}(x)=x
$$

Since $f \circ g$ is undefined, then $g \circ f \neq f \circ g$.
26.7: Let A and B be sets and $f: A \rightarrow B$ and $g: B \rightarrow A$ such that $g \circ f=i d_{A}$ and $f \circ g=i d_{B}$. We want to prove that f is invertible, i.e, that f is one-to-one. We also want to prove that $g=f^{-1}$.

Let's start by proving that f is one-to-one. Suppose that $f(x)=f(y)$. Then $g(f(x))=$ $g(f(y))$, so $g \circ f(x)=g \circ f(y)$, but $g \circ f=i d_{A}$, so $i d_{A}(x)=i d_{A}(y)$, and therefore $x=y$. Hence f is one-to one, which implies that f is invertible.

Let's now prove that $g=f^{-1}$:
We'll start by proving that f is onto. Let $y \in B$. Since $y \in B$, then $g(y) \in A$. Now $f \circ g(y)=i d_{B}(y)=y$ and $f \circ g(y)=f(g(y))$. So $f(g(y))=y$, so f is onto.

Since f is one-to-one, f^{-1} exists and its domain is the image of f. Since f is onto, the image of f is B, so $f^{-1}: B \rightarrow A$. Therefore the domain of f^{-1} equals the domain of g.

Now we just need to prove that for $y \in B, f^{-1}(y)=g(y)$. Since f is onto, there exists an $x \in A$ such that $f(x)=y$. Therefore

$$
f^{-1}(y)=f^{-1}(f(x))=f^{-1} \circ f(x)=i d_{A}(x)=x
$$

and

$$
g(y)=g(f(x))=g \circ f(x)=i d_{A}(x)=x
$$

Therefore $f^{-1}(y)=g(y)$. Therefore $g=f^{-1}$.
26.9: Let A, B, C be sets and $f: A \rightarrow B$ and $g: B \rightarrow C$.
a) Suppose f and g are one-to-one. Let's prove $g \circ f$ is also one-to-one. Suppose $g \circ f(x)=g \circ f(y)$. Then $g(f(x))=g(f(y))$. Since g is one-to-one then $f(x)=f(y)$. Since f is one-to-one then $x=y$. Hence $g \circ f$ is one-to-one.
b) Suppose f and g are onto. Let's prove $g \circ f$ is onto. Suppose $c \in C$. Since g is onto, there exists a $b \in B$ such that $g(b)=c$. Since f is onto, there exists an $a \in A$ such that $f(a)=b$. Therefore $g(f(a))=c$. Therefore $g \circ f(a)=c$. Therefore $g \circ f$ is onto.
c) Suppose f and g are bijections. Let's prove $g \circ f$ is a bijection. Since f and g are one-to-one, then $g \circ f$ is one-to-one. Since f and g are onto, then $g \circ f$ is onto. Since $g \circ f$ is one-to-one and onto, then $g \circ f$ is a bijection.
26.10: The functions in (e) of exercise 26.1 work, i.e., $A=\{1,2,3,4,5\}$ with

$$
f=\{(1,2),(2,3),(3,4),(4,5),(5,1)\}
$$

and

$$
g=\{(1,3),(2,4),(3,5),(4,1),(5,2)\} .
$$

Note that g is not the inverse of f, that neither is the identity and that

$$
f \circ g=\{(1,4),(2,5),(3,1),(4,2),(5,3)\}=g \circ f .
$$

You might be wondering "what's so special about these two functions?" Both of them are permutations of the set $\{1,2,3,4,5\}$, one of them is a translation by 1 and the other by 2 . So the composition is translating by 3 . This kind of construction can be easily generalized to find many more functions with the property of $f \circ g=g \circ f$. An interesting question is whether we can characterize all of the pairs of functions (f, g) with such a property.

