Homework 7 Solutions
Math 230

25.6: If two numbers match zeroes, then they satisfy that the zeroes of both numbers are
in the same positions among the 9 digits of the numbers. There are 512 configurations of 0’s
and not 0’s (indeed each digit is either a 0 or not a 0 and there are 9 digits, hence 2 = 512
configurations). Since we have 513 numbers, by the Pigeonhole principle at least two of them
have the same configuration of 0’s. Hence they match zeroes.

25.9: Break the square into 4 squares of side length 1/2 x 1/2 (i.e. draw the lines con-
necting the midpoints of opposing sides of the square). Since there are 5 points, at least two
of them must land in the same 1/2 x 1/2 square. The farthest apart two points can be inside
the square is if they are in opposing corners, hence

ORORE:

apart. This is what we wanted to prove.

25.16: For this exercise we must take N to be {0,1,2,...} as opposed to our usual def-
inition we use in class. It’s easy to change the function to work out in our case too (add one
to —n/2 and it still is a bijection while working from our usual definition of N).

Without further ado, let’s prove the statement as written in the book. Let’s start by
proving f is onto:

First note that f(0) = 0, hence 0 € I'm(f). Now, if m < 0 is an integer, then n = —2m

is a positive integer, so )
—2m

f(n) = f(=2m) = =M

Therefore m € Im(f), i.e., all negative integers are in the image of f.
If m > 0 is an integer, then m > 1so2m —1>1,son=2m — 1isin N and

2m—1+1_

f(n) = f@2m—1) = 5

m.
Therefore m € Im(f), i.e., all positive integers are in the image of f.
Therefore all integers m are in the image of f, showing that f is onto Z.
Now, let’s prove f is one-to-one:
Suppose f(n) = f(m). Then we have four possibilities:

1. f(n) =—n/2 and f(m) = —m/2. Then —n/2 = —m/2 so m = n.



2. f(n) = —n/2 and f(m) = (m +1)/2. Since n and m are in N, then
m+ 1 n

- > _ 7

5 >0> 5

so f(m) > f(n), contradicting the assumption that f(n) = f(m).
3. f(n) =(n+1)/2 and f(m)= —m/2. Since n and m are in N, then

therefore f(n) > f(m) contradicting the assumption f(n) = f(m).
4. f(n)=(n+1)/2and f(m)=(m+1)/2. Then (n+1)/2=(m+1)/2,son=m

Looking at the possibilities we conclude that if f(n) = f(m) then n = m which implies that
f is one-to-one.
Since f is onto and f is one-to-one, f is a bijection.

25.18: Proving this would be a generalization of the Pigeonhole Principle to infinite sets
(the Pigeonhole principle as stated before was only for finite sets).

Let’s prove it by contradiction using Cantor’s Theorem. Let A be non-empty and f :
24 — A. For the sake of contradiction suppose that f is one-to-one. Since f is one-to-one,
then f has an inverse f~! : Im(f) — 24 that is onto. But the image of f is a subset of A so
it’s easy to build an onto function g : A — 24 by saying g(a) = f~'(a) for a € Im(f) and
g(a) =whatevs for a € I'm(f). Here’s an example of a function g that works:

{ fYz) ifxeIm(f)
0 if v & Im(f)

Since f~! is onto and g is an extension of f~', then g : A — 24 is also onto. However,
Cantor’s theorem states that there are no onto functions from A to 24. CONTRADICTION!
Hence f is not one-to-one!

Summary of the proof: If f is one-to-one, then f~" is onto. But then there is an onto
function from A to 24. This is impossible, hence f is not one-to-one.

g(z) =

1

26.1:

a) fog—=1{(22),(3,2),(4,2)} and go f = {(1,1),(2,1),(3,1)}. go f # fog

b) fog—1{(22).(3,3),(4,4)} and go f = {(1,1),(2,2),(3,3)}. go [ = fog

¢) f o g is undefined. go f = {(1,0),(2:5), (3,3)}. go f # fog.

d) fog=1{(1.4),(2,4),(3,1),(4,1)} and go f = (015,09 (.4), (A1) g7 # 709
(@] = Og

?))fog:{(174) (7 )7<37 )7( )( )}_gof g

fog(x) :f(x2—|—1) = ($2—1—1)2—1 :I4+2x2,
and
g0 f(e) = ga —1) = — 1P+ 1= a® — 242

° f(0) # fog(0),s0gof#foy.

g)
foglx)=flx—T)=(@x—-7)+3=x—4,



and

gof(x)=glx+3)=(x+3)—T=z—4.
Therefore g o f(z) = f o g(x).
h)

fogle)=f2—-2)=1-(2-2)=2-1,
and

gof(@)=gl—a)=2—(1—z)=a+1.

go f(0) # fog(0),sogof#[fog.
i) f o g is undefined because g(—1) = 0 so f(g(—1)) is undefined.

gOf(l’)=g(§) =é+1'

Since f o g is undefined, then go f # fog.
j) Since A # B and A C B, thereisan z € B such that x ¢ A. For this z, g(z) = idg(x) = x,
but f(z) = ida(x) is undefined. Therefore f o g is undefined.

go f(a) = g(f(2)) = glida(x)) = g(x) = idp() = o
Since f o g is undefined, then go f # fog.

26.7: Let A and B besetsand f: A — B and g : B — A such that go f = id4 and
fog=1dg. We want to prove that f is invertible, i.e, that f is one-to-one. We also want
to prove that g = f~%.

Let’s start by proving that f is one-to-one. Suppose that f(x) = f(y). Then g(f(x)) =
9(f(y)), so go f(x) = go f(y), but go f = ida, so ida(z) = ida(y), and therefore z = y.
Hence f is one-to one, which implies that f is invertible.

Let’s now prove that g = f~1:

We'll start by proving that f is onto. Let y € B. Since y € B, then g(y) € A. Now
fogly) =idp(y) =y and fog(y) = f(g(y)). So f(g9(y)) =y, so f is onto.

Since f is one-to-one, f~! exists and its domain is the image of f. Since f is onto, the
image of fis B, so f~!: B — A. Therefore the domain of f~! equals the domain of g.

Now we just need to prove that for y € B, f~*(y) = g(y). Since f is onto, there exists an
x € A such that f(z) =y. Therefore

fHy) = (@) = 1o fz) = ida(z) =,
and
9(y) = g(f(x)) = go f(x) =ida(z) = =.
Therefore f~1(y) = g(y). Therefore g = f~1.

26.9: Let A, B,C besetsand f: A— Bandg: B— C.

a) Suppose f and g are one-to-one. Let’s prove g o f is also one-to-one. Suppose
go f(x) =go f(y). Then g(f(z)) = g(f(y)). Since g is one-to-one then f(z) = f(y). Since
f is one-to-one then x = y. Hence g o f is one-to-one.

b) Suppose f and g are onto. Let’s prove g o f is onto. Suppose ¢ € C. Since g is onto,
there exists a b € B such that g(b) = ¢. Since f is onto, there exists an a € A such that
f(a) =b. Therefore g(f(a)) = c¢. Therefore g o f(a) = c¢. Therefore go f is onto.
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c) Suppose f and g are bijections. Let’s prove g o f is a bijection. Since f and g are
one-to-one, then g o f is one-to-one. Since f and g are onto, then g o f is onto. Since go f
is one-to-one and onto, then g o f is a bijection.

26.10: The functions in (e) of exercise 26.1 work, i.e., A ={1,2,3,4,5} with
f=1(1,2),(2,3),(3,4),(4,5), (5, 1)},

and
9= {(17 3)7 (274)7 (3’ 5)7 (47 1)7 (57 2)}
Note that g is not the inverse of f, that neither is the identity and that

f °0g= {(174)7 (275)7 (37 1)? (47 2)7 (573)} =go f

You might be wondering “what’s so special about these two functions?” Both of them are
permutations of the set {1,2,3,4,5}, one of them is a translation by 1 and the other by 2.
So the composition is translating by 3. This kind of construction can be easily generalized
to find many more functions with the property of f o g = g o f. An interesting question is
whether we can characterize all of the pairs of functions (f, g) with such a property.



