Induction Proof Practice

1. Prove that for any positive integer n,

$$
1+3+6+\cdots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6}
$$

2. Prove that for any positive integer n,

$$
2^{n}>n .
$$

3. Prove by induction that the number of subsets of a set with n elements is 2^{n}.
4. Prove that every positive integer $n>1$, has a prime divisor.
5. Evaluate the sum

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{999 \cdot 1000}
$$

Solutions

1. Proof. For $n=1$, the left side is 1 and the right side is $\frac{1 \cdot 2 \cdot 3}{6}=1$.

Suppose the statement is true for $n=k$, namely, suppose that for some $k \geq 1$, we have

$$
1+3+\cdots+\frac{k(k+1)}{2}=\frac{k(k+1)(k+2)}{6}
$$

Now, consider the case $n=k+1$. We have

$$
\begin{aligned}
1+3+\cdots+\frac{k(k+1)}{2}+\frac{(k+1)(k+2)}{2} & =\left(1+3+\cdots+\frac{k(k+1)}{2}\right)+\frac{(k+1)(k+2)}{2} \\
& =\frac{k(k+1)(k+2)}{6}+\frac{(k+1)(k+2)}{2} \\
& =\frac{(k+1)(k+2)}{6}(k+3)=\frac{(k+1)(k+2)(k+3)}{6} .
\end{aligned}
$$

Therefore, we've shown that when it's true for k, it implies it's true for $k+1$. We've finished the proof by induction.
2. Proof. The base case is $n=1$ and we can see that $2^{1}=2>1$. Therefore it's true for $n=1$.
Let's assume that it's true for $n=k$, namely, suppose $2^{k}>k$. We have $2^{k+1}=2 \cdot 2^{k}>$ $2 \cdot k \geq k+1$ whenever $2 k \geq k+1$, which is true for $k \geq 1$. Therefore, $2^{k+1}>k+1$ and hence we've proved the general statement by induction.
3. Proof. For $n=0$, we have that the only subset of a set with zero elements is the empty set. Therefore, it has one subset. But $2^{0}=1$, so the statement is true for $n=0$. For $n=1$, let $A=\{a\}$ be our set with one element. Then the only subsets are \emptyset and $\{a\}$. Therefore, it has two subsets. Since $2^{1}=2$, we have that the statement to be proved is true for $n=1$. We have out base case.

Now, for an integer $k \geq 1$, suppose that the number of subsets of a set with k elements is 2^{k}. This will be the induction hypothesis.
Suppose $A=\left\{a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right\}$ is a subset with $k+1$ elements. Let's consider all the subsets. Let T be the set of subsets of A that contain a_{k+1} and U be the set of subsets that don't contain a_{k+1}. Note that the set of subsets of A is the disjoint union of T and U. We're going to show that $|T|=|U|=2^{k}$. First, let's consider U. The subsets of A that don't contain a_{k+1} are the subsets of $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. By the induction hypothesis, there are 2^{k} of these. Now consider the subsets of A that contain a_{k+1}. Once you ignore that term, the rest of the subset must be a subset of $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, so by the induction hypothesis there are 2^{k} of these. Therefore, the number of subsets of A is $|T|+|U|=2^{k}+2^{k}=2^{k+1}$, which is what we wanted to prove.
4. Proof. For $n=2$, the prime divisor is 2 . Suppose that all numbers $1<i \leq k$ have a prime factor. We want to show that $k+1$ also has a prime factor. If $k+1$ is prime, then it has a prime factor (itself). If $k+1$ is not prime, then there exist a, b satisfying $1<a \leq b<k+1$ such that $k+1=a b$. But then $1<a \leq k$. By the strong induction hypothesis, a has a prime factor p. But then $p \mid a$ and $a \mid k+1$, so $p \mid k+1$. Therefore $k+1$ has a prime factor. Therefore, by strong induction, all integers greater than 1 have a prime factor.
5. Let's find a pattern:

$$
\begin{aligned}
\frac{1}{1 \cdot 2} & =\frac{1}{2} \\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3} & =\frac{2}{3} \\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4} & =\frac{3}{4} \\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5} & =\frac{4}{5} .
\end{aligned}
$$

It seems the pattern is that the sum up to $\frac{1}{(k-1) k}$ is $\frac{k-1}{k}=1-\frac{1}{k}$. This suggests the answer to the question is $\frac{999}{1000}$. Let's prove that the pattern persists by using induction:

Proof. The base case are the examples listed above. As our induction hypothesis suppose

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(k-1) k}=\frac{k-1}{k} .
$$

Now, consider the next term:

$$
\begin{aligned}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(k-1) k}+\frac{1}{k(k+1)} & =\frac{k-1}{k}+\frac{1}{k(k+1)} \\
& =\frac{1}{k(k+1)}((k-1)(k+1)+1) \\
& =\frac{1}{k(k+1)}\left(k^{2}-1+1\right) \\
& =\frac{k^{2}}{k(k+1)} \\
& =\frac{k}{k+1} .
\end{aligned}
$$

This completes the proof by induction.

