\qquad

Math 230 Midterm \#1

September 30, 2013
Instructions: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

- You may NOT use a calculator.
- Show all of your work.

Question	Points	Score
1	20	
2	20	
3	10	
4	20	
5	10	
6	10	
7	10	
8	20	
9	10	
Total:	130	

Official Cheat Sheet

1. Let A be a set. Then 2^{A} is the set of all subsets of A. For example, if $A=\{1,2\}$, then $2^{A}=\{\emptyset,\{1\},\{2\},\{1,2\}\}$.
2. $|A|$ is the number of elements of A. A useful formula is: $|A \cup B|=$ $|A|+|B|-|A \cap B|$ if A and B are finite sets. Another useful formula is $\left|2^{A}\right|=2^{|A|}$ when A is finite.
3. Here are some Boolean algebra properties (which can be translated easily to set properties by equating \vee with \cup and \wedge with \cap):

- $x \wedge y=y \wedge x$ and $x \vee y=y \vee x$.
- $(x \wedge y) \wedge z=x \wedge(y \wedge z)$ and $(x \vee y) \vee z=x \vee(y \vee z)$.
- $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ and $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.

4. \mathbb{Z} is the set of integers. $\mathbb{N}=\{1,2,3, \ldots\}$ is the set of positive integers.
5. Let A and B be sets. Then

- $A \cup B=\{x \mid x \in A$ or $x \in B\}$,
- $A \cap B=\{x \mid x \in A$ and $x \in B\}$,
- $A-B=\{x \mid x \in A$ and $x \notin B\}$,
- $A \Delta B=(A-B) \cup(B-A)$.
- $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$.

6. Let a and b be integers.

- a is even if there exists an integer c such that $a=2 c$.
- a is odd if there exists an integer c such that $a=2 c+1$.
- We say $a \mid b(a$ divides $b)$ if there exists an integer c such that $b=a c$.
- a is composite if $|a|>1$ and there exists c such that $1<c<|a|$ and $c \mid a$.
- a is prime if $a>1$ and a is not composite.
- a is perfect if a equals the sum of its positive divisors less than a.

1. True or False (Just answer true or false, you don't need to explain your answer):
(a) [2 points] -23 is prime.
(b) [2 points] 7|1001.
(c) [2 points] The sum of two odd numbers is odd.
(d) [2 points] $T \subseteq A$ if and only if $T \in 2^{A}$.
(e) $[2$ points $] \emptyset \subseteq\{\emptyset\}$.
(f) [2 points] Let $n=2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime. n is a perfect number.
(g) [2 points] $2 \in\{1,2,\{1,2\}\}$.
(h) [2 points] If $x^{2}<0$, then x is a perfect number.
(i) [2 points] Two right triangles that have hypotenuses of the same length have the same area.
(j) $[2$ points $] \forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x y=1$.
2. For the following pairs of statements A, B, write a if the statement "If A, then B " is true, write b if the statement "If B, then A " is true and write c if the statement " A if and only if B is true". You should write all that apply.
(a) [5 points] $A: x>0 . B: x^{2}>0$.
(b) [5 points] A : Ellen is a grandmother. B : Ellen is female.
(c) [5 points] $A: x$ is odd. $B: x+1$ is even.
(d) [5 points] A : Polygon $P Q R S$ is a rectangle. B : Polygon $P Q R S$ is a square.
3. Proofs:
(a) [5 points] Using the definition of odd integer provided in the "cheat sheet", prove that if n is an odd integer, then $-n$ is also an odd integer.
(b) [5 points] Let a, b and d be integers. Suppose $b=a q+r$ where q and r are integers. Prove that if $d \mid a$ and $d \mid b$, then $d \mid r$.
4. Find counterexamples to disprove the following statements:
(a) [5 points] An integer x is positive if and only if $x+1$ is positive.
(b) [5 points] An integer is a palindrome if it reads the same forwards and backwards when expressed in base 10. For example, 1331 is a palindrome. All palindromes are divisible by 11.
(c) [5 points] If a, b and c are positive integers then $a^{\left(b^{c}\right)}=\left(a^{b}\right)^{c}$.
(d) [5 points] Let A, B and C be sets. Then $A-(B-C)=(A-B)-C$.
5. Boolean Algebra
(a) [5 points] Prove or disprove that the Boolean expressions $x \rightarrow \neg y$ and $\neg(x \rightarrow y)$ are logically equivalent.
(b) [5 points] The expression $x \rightarrow y$ can be rewritten in terms of only the basic operations \wedge, \vee and \neg; that is,$x \rightarrow y=(\neg x) \vee y$. Find an expression that is logically equivalent to $x \leftrightarrow y$ that uses only the operations \wedge, \vee, \neg and prove that your expression is correct.
6. Consider the following proposition. Let N be a two-digit number and let M be the number formed from N by reversing the digits of N. Now compare N^{2} and M^{2}. The digits of M^{2} are precisely those of N^{2}, but reversed. For example:

$$
\begin{array}{ll}
10^{2}=100 & 01^{2}=001 \\
11^{2}=121 & 11^{2}=121 \\
12^{2}=144 & 21^{2}=441 \\
13^{2}=169 & 31^{2}=961
\end{array}
$$

and so on. Here is a proof of the proposition:
Proof. Since N is a two-digit number, we can write $N=10 a+b$ where a and b are the digits of N. Since M is formed from N by reversing digits, $M=10 b+a$.
Note that $N^{2}=(10 a+b)^{2}=100 a^{2}+20 a b+b^{2}=\left(a^{2}\right) \times 100+(2 a b) \times$ $10+\left(b^{2}\right) \times 1$, so the digits of N^{2} are, in order, $a^{2}, 2 a b, b^{2}$.
Likewise, $M^{2}=(10 b+a)^{2}=\left(b^{2}\right) \times 100+(2 a b) \times 10+\left(a^{2}\right) \times 1$, so the digits of M^{2} are, in order, $b^{2}, 2 a b, a^{2}$, exactly the reverse of N^{2}, which completes the proof.
(a) [5 points] Prove that the proposition is false.
(b) [5 points] Explain why the proof is invalid.

7. Counting

(a) [5 points] In how many ways can we make a list of three integers (a, b, c) where $0 \leq a, b, c \leq 9$ such that $a+b+c$ is even?
(b) [5 points] Evaluate $\prod_{k=0}^{100} \frac{k^{2}}{k+1}$.
8. Let $A \times B=\{(1,2),(1,3),(1,7),(2,2),(2,3),(2,7)\}$.
(a) [5 points] What is $A \cup B$?
(b) [5 points] What is $A \cap B$?
(c) [5 points] What is $A-B$?
(d) [5 points] What is $A \Delta B$?
9. [10 points] Let A, B and C be sets. Prove that

$$
(A \cup B)-C=(A-C) \cup(B-C) .
$$

