Math 230 Midterm #1

September 30, 2013

INSTRUCTIONS: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

- You may NOT use a calculator.
- Show all of your work.

Question	Points	Score
1	20	
2	20	
3	10	
4	20	
5	10	
6	10	
7	10	
8	20	
9	10	
Total:	130	

Official Cheat Sheet

- 1. Let A be a set. Then 2^A is the set of all subsets of A. For example, if $A = \{1, 2\}$, then $2^A = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.
- 2. |A| is the number of elements of A. A useful formula is: $|A \cup B| = |A| + |B| |A \cap B|$ if A and B are finite sets. Another useful formula is $|2^A| = 2^{|A|}$ when A is finite.
- 3. Here are some Boolean algebra properties (which can be translated easily to set properties by equating \lor with \cup and \land with \cap):
 - $x \wedge y = y \wedge x$ and $x \vee y = y \vee x$.
 - $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ and $(x \vee y) \vee z = x \vee (y \vee z)$.
 - $x \land (y \lor z) = (x \land y) \lor (x \land z)$ and $x \lor (y \land z) = (x \lor y) \land (x \lor z)$.
- 4. \mathbb{Z} is the set of integers. $\mathbb{N} = \{1, 2, 3, \ldots\}$ is the set of positive integers.
- 5. Let A and B be sets. Then
 - $A \cup B = \{x | x \in A \text{ or } x \in B\},\$
 - $A \cap B = \{x | x \in A \text{ and } x \in B\},\$
 - $A B = \{x | x \in A \text{ and } x \notin B\},\$
 - $A\Delta B = (A B) \cup (B A).$
 - $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$
- 6. Let a and b be integers.
 - a is even if there exists an integer c such that a = 2c.
 - a is odd if there exists an integer c such that a = 2c + 1.
 - We say a|b (a divides b) if there exists an integer c such that b = ac.
 - a is composite if |a| > 1 and there exists c such that 1 < c < |a| and c|a.
 - a is prime if a > 1 and a is not composite.
 - a is perfect if a equals the sum of its positive divisors less than a.

- 1. True or False (Just answer true or false, you don't need to explain your answer):
 - (a) [2 points] -23 is prime.
 - (b) [2 points] 7|1001.
 - (c) [2 points] The sum of two odd numbers is odd.
 - (d) [2 points] $T \subseteq A$ if and only if $T \in 2^A$.
 - (e) [2 points] $\emptyset \subseteq \{\emptyset\}$.
 - (f) [2 points] Let $n = 2^{p-1}(2^p 1)$ where $2^p 1$ is prime. n is a perfect number.
 - (g) [2 points] $2 \in \{1, 2, \{1, 2\}\}.$
 - (h) [2 points] If $x^2 < 0$, then x is a perfect number.
 - (i) [2 points] Two right triangles that have hypotenuses of the same length have the same area.
 - (j) [2 points] $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, xy = 1.$

Midterm #1

2. For the following pairs of statements A, B, write a if the statement "If A, then B" is true, write b if the statement "If B, then A" is true and write c if the statement "A if and only if B is true". You should write all that apply.

(a) [5 points] A: x > 0. B: $x^2 > 0$.

(b) [5 points] A: Ellen is a grandmother. B: Ellen is female.

(c) [5 points] A: x is odd. B: x + 1 is even.

(d) [5 points] A: Polygon PQRS is a rectangle. B: Polygon PQRS is a square.

3. Proofs:

(a) [5 points] Using the definition of odd integer provided in the "cheat sheet", prove that if n is an odd integer, then -n is also an odd integer.

(b) [5 points] Let a, b and d be integers. Suppose b = aq + r where q and r are integers. Prove that if d|a and d|b, then d|r.

- 4. Find counterexamples to disprove the following statements:
 - (a) [5 points] An integer x is positive if and only if x + 1 is positive.

(b) [5 points] An integer is a *palindrome* if it reads the same forwards and backwards when expressed in base 10. For example, 1331 is a *palindrome*. All *palindromes* are divisible by 11.

(c) [5 points] If a, b and c are positive integers then $a^{(b^c)} = (a^b)^c$.

(d) [5 points] Let A, B and C be sets. Then A - (B - C) = (A - B) - C.

- 5. Boolean Algebra
 - (a) [5 points] Prove or disprove that the Boolean expressions $x \to \neg y$ and $\neg(x \to y)$ are logically equivalent.

(b) [5 points] The expression $x \to y$ can be rewritten in terms of only the basic operations \land, \lor and \neg ; that is, $x \to y = (\neg x) \lor y$. Find an expression that is logically equivalent to $x \leftrightarrow y$ that uses only the operations \land, \lor, \neg and prove that your expression is correct.

- Math 230
 - 6. Consider the following proposition. Let N be a two-digit number and let M be the number formed from N by reversing the digits of N. Now compare N^2 and M^2 . The digits of M^2 are precisely those of N^2 , but reversed. For example:

$10^2 = 100$	$01^2 = 001$
$11^2 = 121$	$11^2 = 121$
$12^2 = 144$	$21^2 = 441$
$13^2 = 169$	$31^2 = 961$

and so on. Here is a proof of the proposition:

Proof. Since N is a two-digit number, we can write N = 10a + b where a and b are the digits of N. Since M is formed from N by reversing digits, M = 10b + a.

Note that $N^2 = (10a + b)^2 = 100a^2 + 20ab + b^2 = (a^2) \times 100 + (2ab) \times 10 + (b^2) \times 1$, so the digits of N^2 are, in order, $a^2, 2ab, b^2$.

Likewise, $M^2 = (10b + a)^2 = (b^2) \times 100 + (2ab) \times 10 + (a^2) \times 1$, so the digits of M^2 are, in order, b^2 , 2ab, a^2 , exactly the reverse of N^2 , which completes the proof.

(a) [5 points] Prove that the proposition is false.

(b) [5 points] Explain why the proof is invalid.

7. Counting

(a) [5 points] In how many ways can we make a list of three integers (a, b, c) where $0 \le a, b, c \le 9$ such that a + b + c is even?

(b) [5 points] Evaluate
$$\prod_{k=0}^{100} \frac{k^2}{k+1}$$
.

Math 230

8. Let $A \times B = \{(1,2), (1,3), (1,7), (2,2), (2,3), (2,7)\}.$ (a) [5 points] What is $A \cup B$?

(b) [5 points] What is $A \cap B$?

(c) [5 points] What is A - B?

(d) [5 points] What is $A\Delta B$?

9. [10 points] Let A, B and C be sets. Prove that

$$(A \cup B) - C = (A - C) \cup (B - C).$$