\qquad

Math 230 Midterm \#3

April 4, 2014
Instructions: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

- You may NOT use a calculator.
- Show all of your work.

Question	Points	Score
1	20	
2	10	
3	10	
4	20	
5	10	
6	10	
7	10	
Total:	90	

1. True or False:

For the following suppose that A, B and C are sets.
(a) [2 points] Every function is a relation.
(b) [2 points] Every relation is a function.
(c) [2 points] The Pigeonhole principle can be stated as: "Let A and B be finite sets and let $f: A \rightarrow B$. If $|A|>|B|$, then f is not one-to-one."
(d) [2 points] The function $f=\{(1,1),(2,1),(3,4)\}$ is a function $f:\{1,2,3,4\} \rightarrow\{1,4\}$.
(e) [2 points] $f(x)=7 x-12$ is a bijection from $(0,1)$ to $(-12,-5)$.
(f) [2 points] If $f: A \rightarrow B$ is one-to-one and $g: B \rightarrow C$ is one-to-one, then $g \circ f$ is one-to-one.
(g) [2 points] Let $f: A \rightarrow B$. If f is one-to-one, then f^{-1} is a function and $f^{-1}: B \rightarrow A$.
(h) [2 points] If $f: A \rightarrow B$ is a bijection, then $f \circ f^{-1}=i d_{A}$.
(i) [2 points] If $f=i d_{A}, g=i d_{B}$ such that $A \subseteq B$ and $A \neq B$, then $f \circ g$ is undefined.
(j) [2 points] If there are 13 people in a room, then at least two of them were born on the same month (not necessarily on the same year).
2. For each of the following statements, write the first sentences of a proof by contradiction:
(a) [2 points] If a square of a rational number is an integer, then the rational number must also be an integer.
(b) [2 points] Distinct circles intersect in at most two points.
(c) [2 points] If the sum of two primes is prime, then one of the primes must be 2 .
(d) [2 points] There are infinitely many primes.
(e) [2 points] Consecutive integers cannot both be even.
3. Prove the following statements:
(a) [5 points] If the sum of two primes is prime, then one of the primes must be two.
(b) [5 points] Let A and B be sets such that $A \cap B=\emptyset$. Then $(A \times B) \cap(B \times A)=\emptyset$.
4. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(x)=|x|$ and let $g: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $g(x)=|x|$.
(a) [5 points] Prove or disprove: f is one-to-one.
(b) [5 points] Prove or disprove: f is onto.
(c) [5 points] Prove or disprove: g is one-to-one.
(d) [5 points] Prove or disprove: g is onto.
5. (a) [5 points] Prove that if $n \geq 10^{10}$ is a positive integer, then two of its digits must be the same.
(b) [5 points] The squares of an 8×8 chess board are colored black or white (not necessarily the same way a usual chess board is colored). We call a group of squares an L-region if it consists of a corner square, the two squares above it and the two squares to its right (so it has the shape of an L with equal width and height). Prove that no matter how we color the chess board, there must be two L-regions that are colored identically.
6. [10 points] Let $A=\{1,2,3,4,5\}$ with $f: A \rightarrow A, g: A \rightarrow A$, and $h: A \rightarrow A$. We are given the following:

- $f=\{(1,2),(2,3),(3,1),(4,3),(5,5)\}$,
- $h=\{(1,3),(2,3),(3,2),(4,5),(5,3)\}$, and
- $h=f \circ g$.

Find all possible functions g that satisfy these conditions.
7. [10 points] Let A, B and C be sets. Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then $g \circ f$ is a bijection.

