NAME:	

Math 230 Midterm #3

April 4, 2014

INSTRUCTIONS: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

- You may NOT use a calculator.
- Show all of your work.

Question	Points	Score
1	20	
2	10	
3	10	
4	20	
5	10	
6	10	
7	10	
Total:	90	

1. True or False:

For the following suppose that A, B and C are sets.

- (a) [2 points] Every function is a relation.
- (b) [2 points] Every relation is a function.
- (c) [2 points] The Pigeonhole principle can be stated as: "Let A and B be finite sets and let $f: A \to B$. If |A| > |B|, then f is not one-to-one."
- (d) [2 points] The function $f = \{(1,1), (2,1), (3,4)\}$ is a function $f: \{1,2,3,4\} \rightarrow \{1,4\}$.
- (e) [2 points] f(x) = 7x 12 is a bijection from (0, 1) to (-12, -5).
- (f) [2 points] If $f:A\to B$ is one-to-one and $g:B\to C$ is one-to-one, then $g\circ f$ is one-to-one.
- (g) [2 points] Let $f: A \to B$. If f is one-to-one, then f^{-1} is a function and $f^{-1}: B \to A$.
- (h) [2 points] If $f: A \to B$ is a bijection, then $f \circ f^{-1} = id_A$.
- (i) [2 points] If $f = id_A$, $g = id_B$ such that $A \subseteq B$ and $A \neq B$, then $f \circ g$ is undefined.
- (j) [2 points] If there are 13 people in a room, then at least two of them were born on the same month (not necessarily on the same year).

- 2. For each of the following statements, write the first sentences of a proof by contradiction:
 - (a) [2 points] If a square of a rational number is an integer, then the rational number must also be an integer.

(b) [2 points] Distinct circles intersect in at most two points.

(c) [2 points] If the sum of two primes is prime, then one of the primes must be 2.

(d) [2 points] There are infinitely many primes.

(e) [2 points] Consecutive integers cannot both be even.

- 3. Prove the following statements:
 - (a) [5 points] If the sum of two primes is prime, then one of the primes must be two.

(b) [5 points] Let A and B be sets such that $A \cap B = \emptyset$. Then $(A \times B) \cap (B \times A) = \emptyset$.

- 4. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = |x| and let $g: \mathbb{N} \to \mathbb{N}$ be defined by g(x) = |x|.
 - (a) [5 points] Prove or disprove: f is one-to-one.

(b) [5 points] Prove or disprove: f is onto.

(c) [5 points] Prove or disprove: g is one-to-one.

(d) [5 points] Prove or disprove: g is onto.

5. (a) [5 points] Prove that if $n \ge 10^{10}$ is a positive integer, then two of its digits must be the same.

(b) [5 points] The squares of an 8 × 8 chess board are colored black or white (not necessarily the same way a usual chess board is colored). We call a group of squares an L-region if it consists of a corner square, the two squares above it and the two squares to its right (so it has the shape of an L with equal width and height). Prove that no matter how we color the chess board, there must be two L-regions that are colored identically.

- 6. [10 points] Let $A=\{1,2,3,4,5\}$ with $f:A\to A,\ g:A\to A,$ and $h:A\to A.$ We are given the following:
 - $f = \{(1,2), (2,3), (3,1), (4,3), (5,5)\},\$
 - $h = \{(1,3), (2,3), (3,2), (4,5), (5,3)\},$ and
 - $h = f \circ g$.

Find all possible functions g that satisfy these conditions.

7. [10 points] Let A, B and C be sets. Prove that if $f: A \to B$ and $g: B \to C$ are bijections, then $g \circ f$ is a bijection.