
Geometry

Homework 1

Enrique Treviño

September 28, 2017

In the problems involving straightedge and compass constructions, you may take for granted the con-
struction of perpendicular line bisectors, angle bisectors, equilateral triangles and squares. In other words,
you can describe a step as “we draw the angle bisector at ” as opposed to also describing how you find
the angle line bisector. You may also take for granted that given a point P and a line `, you can construct
a perpendicular line to ` through P . Thales theorem without proof.

1. Given a point A and a line ` through A. Describe how you would create, using only straightedge and
compass, a line k that goes through A that satisfies that the small angle between k and ` is 75◦. In
the figure below, the dotted line is what k should be and ` is the solid line.

Solution 1. Let B be a point on line ` to the right of A. Now find C above the line such that 4ABC
is equilateral. Now find D to the left of AC such that 4ADC is equilateral. Now bisect the angle
]CAD and pick a point E in the angle bisector. Now bisect the angle ]CAE and pick a point F in
the angle bisector. Then

]CAF =
1

2
]CAE =

1

4
]CAD = 15◦.

Therefore ]BAF = ]BAC + ]ACF = 60◦ + 15◦ = 75◦. Then the line k is the line AF .

2. Given two points A and B on a circle Γ, describe how you can find, using only straightedge and
compass, a point P such that the rays PA and PB are tangent to Γ.



Solution 2. The first part is to find the center of the circle. Let O be the name for the center of the
circle. We know that OA = OB, so O has to be in the perpendicular line bisector of AB. We draw
the perpendicular line bisector to AB and we let C and D be the intersections of the line with the
circle. Then CD is a diameter, so O is the midpoint of CD (which we can find with straight edge and
compass). Therefore, we’ve found the center of the circle. Now simply draw the lines perpendicular
to OA and OB through A and B, respectively. These lines are the tangent lines. Their intersection is
our desired P .

3. Given a regular n-gon, describe how you can find using only straightedge and compass, a regular
2n-gon.

Solution 3. Consider a regular polygon with vertices A1, A2, . . . An. We will first prove that every
polygon can be inscribed in a circle. First, let α be the angle at every vertex. Then αn = 180(n− 2)
degrees (proving this is part of Homework 2). Let O be the intersection of the angle bisector of
]AnA1A2 with the angle bisector of ]A1A2A3. Then OA1 = OA2 by construction. Furthermore,
]A1OA2 = 180− ]OA1A2 − ]OA2A1 = 180− 2]OA1A2 = 180− α. Since nα = (n− 2)(180), then

n]OA2A1 = 180n− nα = 180(n− (n− 2)) = 180(2) = 360. (1)

So the angle OA1A2 fits exactly n times around the point O. We can draw A′3, A
′
4, . . . , A

′
n satisfying

that OA1 = OA2 = OA′3 = OA′4 = . . . = OA′n and that ]A1OA2 = ]A2OA
′
3 = ]A′3OA

′
4 = . . . =

A′n−1OA
′
n = A′nOA1 (it lands back at A1 because if we do it n times we end up at the beginning by

(1)). By SAS we get that A1A2 = A2A
′
3 = A′3A

′
4 = . . . = A′n−1A

′
n = A′nA1. Therefore the n-gon

A1A2A
′
3A
′
4 . . . A

′
n is a regular n-gon that can be fit in a circle. We can now see that A′3 = A3, A

′
4 =

A4, . . . , A
′
n = An.

The proof above not only shows that every regular polygon can be inscribed in a circle, but that the
center of that circle is the intersection of the angle bisectors of two consecutive vertices. We can also
conclude that all angle bisectors intersect in the center of the circle. For our construction, what we
will do is find the angle bisectors of A1 and A2. The intersection is O. Now draw the circle Γ with
center O and radius A1. This circle will catch all vertices of the regular n-gon (as proven above). For
each i = 1, 2, . . . , n, find the perpendicular line bisector of AiAi+1 (where we wrap around the circle
by saying i+ 1 = 1 when i = n). The perpendicular line bisector intersects the circle twice. Consider
the intersection on the side of AiAi+1 and call it A′i. Then AiA

′
i = A′iAi+1 by construction. This is

true all around the circle, so the 2n-gon A1A
′
1A2A

′
2 . . . AnA

′
n is regular.



Figure 1: The construction of an 18 sided regular polygon from a nine sided regular polygon. The read lines
are the angle bisectors of angles ]A1 and ]A2, while the black rays (that go through O) are the perpendicular
line bisectors of the edges of the polygon. The 18-sided polygon would be the polygon A1A

′
1A2A

′
2 . . . A9A

′
9

(the edges are green).

4. Given a regular n-gon and a regular m-gon satisfying that n and m are relatively prime1, show that
you can create a regular nm-gon using only straightedge and compass.

Solution 4. In class we described how we can shrink or expand the polygons and move them so that
they both fit in a unit circle and they both share a vertex A (all done with straightedge and compass).
I will now describe how to do this for the example of the triangle and a pentagon and then I will explain
how it generalizes. First place the polygons in a unit circle. Let ABC be an equilateral triangle and
ADEFG be a regular pentagon as in the figure below:

A regular n-gon with adjacent vertices A, B satisfies that ]AOB = 360
n , where O is the center of the

circle. Now in the figure above consider the angle ]DOB. We have

]DOB = ]BOA− ]DOA =
360

3
− 360

5
=

2

15
(360).

1this means that there is no integer d > 1 such that d|n and d|m



Now by using the length BD we can place the compass at B with radius BD and find point H on
the circle such that BH = DH. We can then place the compass on H with radius HB and find that
the compass lands on F (which we already had). We continue around the circle in this fashion. After
15 steps we’ll end up back at B. So we’ll have 15 points A,Q,K,D,L,B,E,H,N, F,C, I,G, J, P , all
equidistant across the unit circle. So we have a regular 15-gon. The picture below illustrates the
process:

Figure 2: ABC is an equilateral triangle on the unit circle, ADEFG is a regular pentagon on the unit circle.
By drawing circles of radius BD around the circle we find the points that build the regular 15-gon on the
unit circle.

Now, why does this work? The key is that the angle DOB is 2/15 of 360, so if we move with radius
BD we create angles of that size. After making 15 of them, they break the circle in the middle with
15 angles of length 360/15. This works because 2 and 15 are relatively prime, so they don’t have any
factors in common. Note that if you try this with 3/15, you don’t eventually break down into fifteen
angles, after 5 circles you are back at the beginning (3× 5 = 15).

The generalization goes as follows. Suppose A1A2 . . . An is a regular n-gon on the unit circle and that
B1B2 . . . Bm is a regular m-gon on the unit circle with A1 = B1. One of n and m is bigger, so suppose
that m > n. Now consider B2A2 and in particular the central angle opening this chord.

]A2OB2 = ]A2OA1 − ]B2OB1 =
360

n
− 360

m
=
m− n
mn

(360)ll.

We can then draw circles with radius B2A2 by moving from point to point and do it mn times. We know
that m and n are relatively prime. Therefore gcd(m,n) = 1. Now gcd(m−n, n) = gcd((m−n)+n, n) =
gcd(m,n) = 1, and gcd(m − n,m) = gcd(−n,m) = gcd(n,m) = 1. Therefore gcd(m − n,mn) = 1.
That means that the circles don’t cycle before one draws mn circles, so we will have mn equidistant
points around the circle and we can build the regular mn-gon now.

5. Exercise 1.3.5 from the book.

Solution 5. Here’s a proof that trisecting a segment does not trisect an angle. Let OA′B′ be a triangle
with ]A′OB′ = 90◦. Now let prolong A′B′ in the direction of A′ to find A such that AA′ = A′B′.
Similarly prolong A′B′ in the direction of B′ to find B such that BB′ = A′B′. Then A′ and B′ trisect
AB, but OA′ and OB′ do not trisect ]AOB because if it did trisect it, then ]A′OB′ = 1

3]AOB <
180◦

3 = 60◦. But ]A′OB′ = 90◦, so we have a contradiction. Therefore trisecting a segment is not
enough to trisect an angle.



6. Exercises 1.3.6, 1.4.1 and 1.4.2.

Solution 6. For 1.3.6: Suppose AP
PB = AQ

QC . Then

AB

AP
=
AP +BP

AP
= 1 +

BP

AP
= 1 +

CQ

AQ
=
AQ+QC

AQ
=
AC

AQ
.

Therefore AP
AB = AQ

AC .

For 1.4.1: Draw the parallel line to AB through P . Let Q be the intersection of this parallel line with
AC. Since PR 6 ‖AB, then Q and R are different points. Now we know that AP/AB = AQ/AC. But
we also have that AP/AB = AR/AC. Then AR = AQ. But since R and Q are on the line segment
AC and AR = AQ, we have that R = Q. This contradicts the assumption that AR 6 ‖AB.

For 1.4.2: Suppose P is any point on AB and Q is any point on AC. If PQ‖AB, then by Thales
(which we proved later in chapter 2) AP

PB = AQ
QC . But then by 1.3.6 this means AP

AB = AQ
AC . Therefore

PQ‖AB ⇒ AP
AB = AQ

AC .

Now suppose P is any point on AB and Q is any point on AC and AP
AB = AQ

AC . Then by 1.4.1, that
means PQ‖AB. Therefore the if and only if statement has been proved.

7. Exercises 1.4.3 and 1.4.4.

Solution 7. For 1.4.3: Since AB‖ED, then

OA

OE
=
OB

OD
.

Since FE‖BC, then
OE

OC
=
OF

OB
.

Now multiply these two equation to get

OA

OE
· OE
OC

=
OB

OD
· OF
OB

OA

OC
=
OF

OD
.

Therefore
OA

OF
=
OC

OD
.

Now, by Thales we get that AF‖CD.

For 1.4.4: Since AB‖A′B′, then
OA

OA′
=

OB

OB′
.

Since BC‖B′C ′, then
OB

OB′
=

OC

OC ′
.

Therefore OA
OA′ = OC

OC′ , and hence
OA

OC
=
OA′

OC ′
.

Now, by Thales we get that AC‖A′C ′.



8. Exercises 1.5.1, 1.5.2, 1.5.3 and 1.5.4.

Solution 8. 1.5.1: √
2 + 1

1
=

(
√

2 + 1)(
√

2− 1)√
2− 1

=
22 − 12√

2− 1
=

1√
2− 1

.

1.5.2: Suppose a/b =
√

2 + 1. Then a = (
√

2 + 1)b. Therefore

a− 2b = (
√

2 + 1)b− 2b = (
√

2− 1)b.

Then
b

a− 2b
=

b

(
√

2− 1)b
=

1√
2− 1

=
√

2 + 1 =
a

b
.

1.5.3: Suppose
√

2 + 1 = m/n with m and n positive integers with m as small as possible. By 1.5.2
we have that if

√
2 + 1 = m/n, then

√
2 + 1 = n/(m− 2n). Since n is positive and

√
2 + 1 is positive,

then m− 2n is positive. So we have
√

2 + 1 = n/(m− 2n) where n and m− 2n are positive integers.
Furthermore, since

√
2 + 1 > 1, then m > n. Therefore we have a representation of

√
2 + 1 as a ratio of

two positive integers with a numerator smaller than m. That contradicts our choice of m. Therefore√
2 + 1 cannot be the ratio of two integers.

1.5.4: Suppose that
√

2 is rational, i.e., that there exist integers p and q such that
√

2 = p/q. But
then √

2 + 1 =
p

q
+ 1 =

p+ q

q
.

Therefore
√

2 + 1 is the ratio of two integers and hence rational. But we know
√

2 + 1 is irrational, so
we’ve reached a contradiction. Therefore

√
2 is irrational.

BONUS In class I mentioned that given two points A and B, one can find using only compass (without the
straightedge) a point C such that 4ABC is equilateral. One can also find points to make an hexagon
using only compass. Prove or disprove that you can find, using only a compass, points C and D such
that ABCD is a square.

Solution 9. Begin with A and B. Now find C that makes ABC equilateral by intersecting the circle
with radius AB centered at A with the circle with radius AB centered at B. Then find D to make
BCD equilateral and E to make BDE equilateral as in the figure below. Now we have that A,B,E
are collinear and that AB = BE. We also have that CE =

√
3AB = AD because they are twice

the height of an equilateral triangle of length AB. Now draw the circle of radius CE centered at E
and the circle of radius AD centered at A (in the figure below they are colored blue). Let F be their
intersection. Since AF = EF , then the line from F to the midpoint of AE is perpendicular to AE.
But B is the midpoint of AE. Therefore BF ⊥ AE. Now AF =

√
3AB, so by Pythagoras we have

BF 2 = AF 2 −AB2 = 3AB2 −AB2 = 2AB2.

Therefore BF =
√

2AB. Now draw the circle of radius BF with center at B (colored red) and intersect
it with the circle of radius AB centered at A. Call this intersection G. Then we have that BG =

√
2AB

and AG = AB, so BG2 = 2AB2 = AB2 + AB2 = AB2 + AG2. Therefore, by the converse of the
Pythagorean theorem ]BAG = 90◦. Since AG = AB and AG ⊥ AB, we have one of the two points
we need to find to get the square. We can build the other point, which we’ll call H, similarly and get
the square (I drew the final circle that would be drawn for the other side in green). Then ABHG is a
square.




