Geometry
 Homework 1

Enrique Treviño

September 28, 2017

In the problems involving straightedge and compass constructions, you may take for granted the construction of perpendicular line bisectors, angle bisectors, equilateral triangles and squares. In other words, you can describe a step as "we draw the angle bisector at __-" as opposed to also describing how you find the angle line bisector. You may also take for granted that given a point P and a line ℓ, you can construct a perpendicular line to ℓ through P. Thales theorem without proof.

1. Given a point A and a line ℓ through A. Describe how you would create, using only straightedge and compass, a line k that goes through A that satisfies that the small angle between k and ℓ is 75°. In the figure below, the dotted line is what k should be and ℓ is the solid line.

Solution 1. Let B be a point on line ℓ to the right of A. Now find C above the line such that $\triangle A B C$ is equilateral. Now find D to the left of $A C$ such that $\triangle A D C$ is equilateral. Now bisect the angle $\measuredangle C A D$ and pick a point E in the angle bisector. Now bisect the angle $\measuredangle C A E$ and pick a point F in the angle bisector. Then

$$
\measuredangle C A F=\frac{1}{2} \measuredangle C A E=\frac{1}{4} \measuredangle C A D=15^{\circ} .
$$

Therefore $\measuredangle B A F=\measuredangle B A C+\measuredangle A C F=60^{\circ}+15^{\circ}=75^{\circ}$. Then the line k is the line $A F$.

2. Given two points A and B on a circle Γ, describe how you can find, using only straightedge and compass, a point P such that the rays $P A$ and $P B$ are tangent to Γ.

Solution 2. The first part is to find the center of the circle. Let O be the name for the center of the circle. We know that $O A=O B$, so O has to be in the perpendicular line bisector of $A B$. We draw the perpendicular line bisector to $A B$ and we let C and D be the intersections of the line with the circle. Then $C D$ is a diameter, so O is the midpoint of $C D$ (which we can find with straight edge and compass). Therefore, we've found the center of the circle. Now simply draw the lines perpendicular to $O A$ and $O B$ through A and B, respectively. These lines are the tangent lines. Their intersection is our desired P.

3. Given a regular n-gon, describe how you can find using only straightedge and compass, a regular $2 n$-gon.

Solution 3. Consider a regular polygon with vertices $A_{1}, A_{2}, \ldots A_{n}$. We will first prove that every polygon can be inscribed in a circle. First, let α be the angle at every vertex. Then $\alpha n=180(n-2)$ degrees (proving this is part of Homework 2). Let O be the intersection of the angle bisector of $\measuredangle A_{n} A_{1} A_{2}$ with the angle bisector of $\measuredangle A_{1} A_{2} A_{3}$. Then $O A_{1}=O A_{2}$ by construction. Furthermore, $\measuredangle A_{1} O A_{2}=180-\measuredangle O A_{1} A_{2}-\measuredangle O A_{2} A_{1}=180-2 \measuredangle O A_{1} A_{2}=180-\alpha$. Since $n \alpha=(n-2)(180)$, then

$$
\begin{equation*}
n \measuredangle O A_{2} A_{1}=180 n-n \alpha=180(n-(n-2))=180(2)=360 . \tag{1}
\end{equation*}
$$

So the angle $O A_{1} A_{2}$ fits exactly n times around the point O. We can draw $A_{3}^{\prime}, A_{4}^{\prime}, \ldots, A_{n}^{\prime}$ satisfying that $O A_{1}=O A_{2}=O A_{3}^{\prime}=O A_{4}^{\prime}=\ldots=O A_{n}^{\prime}$ and that $\measuredangle A_{1} O A_{2}=\measuredangle A_{2} O A_{3}^{\prime}=\measuredangle A_{3}^{\prime} O A_{4}^{\prime}=\ldots=$ $A_{n-1}^{\prime} O A_{n}^{\prime}=A_{n}^{\prime} O A_{1}$ (it lands back at A_{1} because if we do it n times we end up at the beginning by (1)). By SAS we get that $A_{1} A_{2}=A_{2} A_{3}^{\prime}=A_{3}^{\prime} A_{4}^{\prime}=\ldots=A_{n-1}^{\prime} A_{n}^{\prime}=A_{n}^{\prime} A_{1}$. Therefore the n-gon $A_{1} A_{2} A_{3}^{\prime} A_{4}^{\prime} \ldots A_{n}^{\prime}$ is a regular n-gon that can be fit in a circle. We can now see that $A_{3}^{\prime}=A_{3}, A_{4}^{\prime}=$ $A_{4}, \ldots, A_{n}^{\prime}=A_{n}$.
The proof above not only shows that every regular polygon can be inscribed in a circle, but that the center of that circle is the intersection of the angle bisectors of two consecutive vertices. We can also conclude that all angle bisectors intersect in the center of the circle. For our construction, what we will do is find the angle bisectors of A_{1} and A_{2}. The intersection is O. Now draw the circle Γ with center O and radius A_{1}. This circle will catch all vertices of the regular n-gon (as proven above). For each $i=1,2, \ldots, n$, find the perpendicular line bisector of $A_{i} A_{i+1}$ (where we wrap around the circle by saying $i+1=1$ when $i=n$). The perpendicular line bisector intersects the circle twice. Consider the intersection on the side of $A_{i} A_{i+1}$ and call it A_{i}^{\prime}. Then $A_{i} A_{i}^{\prime}=A_{i}^{\prime} A_{i+1}$ by construction. This is true all around the circle, so the $2 n$-gon $A_{1} A_{1}^{\prime} A_{2} A_{2}^{\prime} \ldots A_{n} A_{n}^{\prime}$ is regular.

Figure 1: The construction of an 18 sided regular polygon from a nine sided regular polygon. The read lines are the angle bisectors of angles $\measuredangle A_{1}$ and $\measuredangle A_{2}$, while the black rays (that go through O) are the perpendicular line bisectors of the edges of the polygon. The 18 -sided polygon would be the polygon $A_{1} A_{1}^{\prime} A_{2} A_{2}^{\prime} \ldots A_{9} A_{9}^{\prime}$ (the edges are green).
4. Given a regular n-gon and a regular m-gon satisfying that n and m are relatively prime ${ }^{1}$, show that you can create a regular nm -gon using only straightedge and compass.

Solution 4. In class we described how we can shrink or expand the polygons and move them so that they both fit in a unit circle and they both share a vertex A (all done with straightedge and compass). I will now describe how to do this for the example of the triangle and a pentagon and then I will explain how it generalizes. First place the polygons in a unit circle. Let $A B C$ be an equilateral triangle and $A D E F G$ be a regular pentagon as in the figure below:

A regular n-gon with adjacent vertices A, B satisfies that $\measuredangle A O B=\frac{360}{n}$, where O is the center of the circle. Now in the figure above consider the angle $\measuredangle D O B$. We have

$$
\measuredangle D O B=\measuredangle B O A-\measuredangle D O A=\frac{360}{3}-\frac{360}{5}=\frac{2}{15}(360)
$$

[^0]Now by using the length $B D$ we can place the compass at B with radius $B D$ and find point H on the circle such that $B H=D H$. We can then place the compass on H with radius $H B$ and find that the compass lands on F (which we already had). We continue around the circle in this fashion. After 15 steps we'll end up back at B. So we'll have 15 points $A, Q, K, D, L, B, E, H, N, F, C, I, G, J, P$, all equidistant across the unit circle. So we have a regular 15-gon. The picture below illustrates the process:

Figure 2: $A B C$ is an equilateral triangle on the unit circle, $A D E F G$ is a regular pentagon on the unit circle. By drawing circles of radius $B D$ around the circle we find the points that build the regular 15 -gon on the unit circle.

Now, why does this work? The key is that the angle $D O B$ is $2 / 15$ of 360 , so if we move with radius $B D$ we create angles of that size. After making 15 of them, they break the circle in the middle with 15 angles of length $360 / 15$. This works because 2 and 15 are relatively prime, so they don't have any factors in common. Note that if you try this with $3 / 15$, you don't eventually break down into fifteen angles, after 5 circles you are back at the beginning $(3 \times 5=15)$.
The generalization goes as follows. Suppose $A_{1} A_{2} \ldots A_{n}$ is a regular n-gon on the unit circle and that $B_{1} B_{2} \ldots B_{m}$ is a regular m-gon on the unit circle with $A_{1}=B_{1}$. One of n and m is bigger, so suppose that $m>n$. Now consider $B_{2} A_{2}$ and in particular the central angle opening this chord.

$$
\measuredangle A_{2} O B_{2}=\measuredangle A_{2} O A_{1}-\measuredangle B_{2} O B_{1}=\frac{360}{n}-\frac{360}{m}=\frac{m-n}{m n}(360) l l
$$

We can then draw circles with radius $B_{2} A_{2}$ by moving from point to point and do it $m n$ times. We know that m and n are relatively prime. Therefore $\operatorname{gcd}(m, n)=1$. Now $\operatorname{gcd}(m-n, n)=\operatorname{gcd}((m-n)+n, n)=$ $\operatorname{gcd}(m, n)=1$, and $\operatorname{gcd}(m-n, m)=\operatorname{gcd}(-n, m)=\operatorname{gcd}(n, m)=1$. Therefore $\operatorname{gcd}(m-n, m n)=1$. That means that the circles don't cycle before one draws $m n$ circles, so we will have $m n$ equidistant points around the circle and we can build the regular $m n$-gon now.
5. Exercise 1.3.5 from the book.

Solution 5. Here's a proof that trisecting a segment does not trisect an angle. Let $O A^{\prime} B^{\prime}$ be a triangle with $\measuredangle A^{\prime} O B^{\prime}=90^{\circ}$. Now let prolong $A^{\prime} B^{\prime}$ in the direction of A^{\prime} to find A such that $A A^{\prime}=A^{\prime} B^{\prime}$. Similarly prolong $A^{\prime} B^{\prime}$ in the direction of B^{\prime} to find B such that $B B^{\prime}=A^{\prime} B^{\prime}$. Then A^{\prime} and B^{\prime} trisect $A B$, but $O A^{\prime}$ and $O B^{\prime}$ do not trisect $\measuredangle A O B$ because if it did trisect it, then $\measuredangle A^{\prime} O B^{\prime}=\frac{1}{3} \measuredangle A O B<$ $\frac{180^{\circ}}{3}=60^{\circ}$. But $\measuredangle A^{\prime} O B^{\prime}=90^{\circ}$, so we have a contradiction. Therefore trisecting a segment is not enough to trisect an angle.
6. Exercises 1.3.6, 1.4.1 and 1.4.2.

Solution 6. For 1.3.6: Suppose $\frac{A P}{P B}=\frac{A Q}{Q C}$. Then

$$
\frac{A B}{A P}=\frac{A P+B P}{A P}=1+\frac{B P}{A P}=1+\frac{C Q}{A Q}=\frac{A Q+Q C}{A Q}=\frac{A C}{A Q}
$$

Therefore $\frac{A P}{A B}=\frac{A Q}{A C}$.
For 1.4.1: Draw the parallel line to $A B$ through P. Let Q be the intersection of this parallel line with $A C$. Since $P R \nmid A B$, then Q and R are different points. Now we know that $A P / A B=A Q / A C$. But we also have that $A P / A B=A R / A C$. Then $A R=A Q$. But since R and Q are on the line segment $A C$ and $A R=A Q$, we have that $R=Q$. This contradicts the assumption that $A R \nVdash A B$.

For 1.4.2: Suppose P is any point on $A B$ and Q is any point on $A C$. If $P Q \| A B$, then by Thales (which we proved later in chapter 2) $\frac{A P}{P B}=\frac{A Q}{Q C}$. But then by 1.3.6 this means $\frac{A P}{A B}=\frac{A Q}{A C}$. Therefore $P Q \| A B \Rightarrow \frac{A P}{A B}=\frac{A Q}{A C}$.
Now suppose P is any point on $A B$ and Q is any point on $A C$ and $\frac{A P}{A B}=\frac{A Q}{A C}$. Then by 1.4.1, that means $P Q \| A B$. Therefore the if and only if statement has been proved.
7. Exercises 1.4.3 and 1.4.4.

Solution 7. For 1.4.3: Since $A B \| E D$, then

$$
\frac{O A}{O E}=\frac{O B}{O D}
$$

Since $F E \| B C$, then

$$
\frac{O E}{O C}=\frac{O F}{O B}
$$

Now multiply these two equation to get

$$
\begin{aligned}
\frac{O A}{O E} \cdot \frac{O E}{O C} & =\frac{O B}{O D} \cdot \frac{O F}{O B} \\
\frac{O A}{O C} & =\frac{O F}{O D}
\end{aligned}
$$

Therefore

$$
\frac{O A}{O F}=\frac{O C}{O D}
$$

Now, by Thales we get that $A F \| C D$.
For 1.4.4: Since $A B \| A^{\prime} B^{\prime}$, then

$$
\frac{O A}{O A^{\prime}}=\frac{O B}{O B^{\prime}}
$$

Since $B C \| B^{\prime} C^{\prime}$, then

$$
\frac{O B}{O B^{\prime}}=\frac{O C}{O C^{\prime}}
$$

Therefore $\frac{O A}{O A^{\prime}}=\frac{O C}{O C^{\prime}}$, and hence

$$
\frac{O A}{O C}=\frac{O A^{\prime}}{O C^{\prime}}
$$

Now, by Thales we get that $A C \| A^{\prime} C^{\prime}$.
8. Exercises 1.5.1, 1.5.2, 1.5.3 and 1.5.4.

Solution 8. 1.5.1:

$$
\frac{\sqrt{2}+1}{1}=\frac{(\sqrt{2}+1)(\sqrt{2}-1)}{\sqrt{2}-1}=\frac{2^{2}-1^{2}}{\sqrt{2}-1}=\frac{1}{\sqrt{2}-1}
$$

1.5.2: Suppose $a / b=\sqrt{2}+1$. Then $a=(\sqrt{2}+1) b$. Therefore

$$
a-2 b=(\sqrt{2}+1) b-2 b=(\sqrt{2}-1) b .
$$

Then

$$
\frac{b}{a-2 b}=\frac{b}{(\sqrt{2}-1) b}=\frac{1}{\sqrt{2}-1}=\sqrt{2}+1=\frac{a}{b}
$$

1.5.3: Suppose $\sqrt{2}+1=m / n$ with m and n positive integers with m as small as possible. By 1.5.2 we have that if $\sqrt{2}+1=m / n$, then $\sqrt{2}+1=n /(m-2 n)$. Since n is positive and $\sqrt{2}+1$ is positive, then $m-2 n$ is positive. So we have $\sqrt{2}+1=n /(m-2 n)$ where n and $m-2 n$ are positive integers. Furthermore, since $\sqrt{2}+1>1$, then $m>n$. Therefore we have a representation of $\sqrt{2}+1$ as a ratio of two positive integers with a numerator smaller than m. That contradicts our choice of m. Therefore $\sqrt{2}+1$ cannot be the ratio of two integers.
1.5.4: Suppose that $\sqrt{2}$ is rational, i.e., that there exist integers p and q such that $\sqrt{2}=p / q$. But then

$$
\sqrt{2}+1=\frac{p}{q}+1=\frac{p+q}{q}
$$

Therefore $\sqrt{2}+1$ is the ratio of two integers and hence rational. But we know $\sqrt{2}+1$ is irrational, so we've reached a contradiction. Therefore $\sqrt{2}$ is irrational.

BONUS In class I mentioned that given two points A and B, one can find using only compass (without the straightedge) a point C such that $\triangle A B C$ is equilateral. One can also find points to make an hexagon using only compass. Prove or disprove that you can find, using only a compass, points C and D such that $A B C D$ is a square.

Solution 9. Begin with A and B. Now find C that makes $A B C$ equilateral by intersecting the circle with radius $A B$ centered at A with the circle with radius $A B$ centered at B. Then find D to make $B C D$ equilateral and E to make $B D E$ equilateral as in the figure below. Now we have that A, B, E are collinear and that $A B=B E$. We also have that $C E=\sqrt{3} A B=A D$ because they are twice the height of an equilateral triangle of length $A B$. Now draw the circle of radius $C E$ centered at E and the circle of radius $A D$ centered at A (in the figure below they are colored blue). Let F be their intersection. Since $A F=E F$, then the line from F to the midpoint of $A E$ is perpendicular to $A E$. But B is the midpoint of $A E$. Therefore $B F \perp A E$. Now $A F=\sqrt{3} A B$, so by Pythagoras we have

$$
B F^{2}=A F^{2}-A B^{2}=3 A B^{2}-A B^{2}=2 A B^{2}
$$

Therefore $B F=\sqrt{2} A B$. Now draw the circle of radius $B F$ with center at B (colored red) and intersect it with the circle of radius $A B$ centered at A. Call this intersection G. Then we have that $B G=\sqrt{2} A B$ and $A G=A B$, so $B G^{2}=2 A B^{2}=A B^{2}+A B^{2}=A B^{2}+A G^{2}$. Therefore, by the converse of the Pythagorean theorem $\measuredangle B A G=90^{\circ}$. Since $A G=A B$ and $A G \perp A B$, we have one of the two points we need to find to get the square. We can build the other point, which we'll call H, similarly and get the square (I drew the final circle that would be drawn for the other side in green). Then $A B H G$ is a square.

[^0]: ${ }^{1}$ this means that there is no integer $d>1$ such that $d \mid n$ and $d \mid m$

