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1. Exercises 2.1.2, 2.1.3, 2.1.4 and 2.1.5.

Solution 1. For exercise 2.1.2, consider the following heptagon ABCDEFG:

By drawing all of the diagonals that spring out from vertex A we triangulated the heptagon. There are
5 triangles. It’s easy to see why this generalizes. Suppose you have the n-gon A1A2 . . . An. Now draw
all of the diagonals that spring out from vertex A1. Since A1A2 and A1An are edges of the n-gon, the
diagonals have the form A1Ai for i = 3, 4, 5, . . . , n− 1. Therefore we have n− 3 diagonals. Note that
as we draw the diagonals in order we form one triangle each time except for the last diagonal which
splits A1An−2An−1An in two triangles. Therefore we have n− 2 triangles forming the n-gon.

For exercise 2.1.3 note that the process from the previous paragraph triangulated an n-gon into n− 2
triangles whose angles are parts of the original angles of the n-gon. It is easy to see that the sum of
the angles of the n-gon is equal to the sum of the angles of the n − 2 triangles. But since the angles
in each triangle add up to 180◦, then the sum of the angles of the polygon add up to 180◦(n − 2) or
(n− 2)π radians.

For exercise 2.1.4 note that a regular n-gon has all of its angles equal to each other. Therefore the
angle at each vertex is n−2

n (180◦) or n−2
n π radians.

For exercise 2.1.5 note that if you tile the plane with regular n-gons, then you have to be able to glue
together many copies of the same n-gon. Since the angles that are glued together add up to 360◦,
then you can only use n-gons whose angles are divisors of 360◦. But then 360 = 180

(
n−2
n

)
k for some

integer k. So 2n = (n− 2)k. This implies n(k − 2) = 2k. But then

n =
2k

k − 2
= 2

k

k − 2
= 2

(
1 +

2

k − 2

)
= 2 +

4

k − 2
.

So k − 2 has to divide 4. There are only three possibilities k − 2 = 1, k − 2 = 2, or k − 2 = 4. These
values of k correspond to n = 6, 4, and 3 respectively. Therefore you can only tile the plane with
triangles, squares or hexagons (if you restrict yourself to regular polygons).

2. Exercises 2.2.1, 2.2.2 and 2.2.3.

Solution 2. For Exercise 2.2.1 consider the figure with the following labels:

Since AB‖CD we have that ]CDB = ]DBA and ]DCA = ]CAB. Since ABCD is a parallellogram,
then AB = CD, so by ASA we have that 4CDE ∼= 4ABE. Therefore DE = BE and AE = CE, so
the diagonals of the parallellogram bisect each other.

For exercise 2.2.2 use the following diagram:



Note that a rhombus is also a parallellogram, so its diagonals bisect each other. Since all the sides of a
rhombus are equal, then in particular AB = BC. Since the diagonals bisect each other, then AE = CE.
Now 4ABE and 4CBE have two equal sides and share the side BE, therefore 4ABE ∼= 4CBE.
Therefore ]AEB = ]CEB. Since ]AEB + ]CEB = 180◦, then ]AEB = ]CEB = 90◦. Therefore
AC ⊥ BD.

For exercise 2.2.3 we’ll use the following figure, where AD is the angle bisector of ]BAC:

By construction we have ]CAD = ]BAD. We also have that AB = AC. Since 4ABD and 4ACD
share the side AD, then by SAS we have 4ABD ∼= 4ACD. Therefore ]ABD = ]ACD, which
implies that ]ABC = ]ACB, which is what we wanted to prove.

3. Exercise 2.3.3.

Solution 3. In the following figure let AB = BC = CD = AD = a and CG = GF = FE = CE = b.
Then the area represented by ABGFEDA is a2 − b2 because it is the area of ABCD minus the area
of CEFG. Now extend AB and HG to points J and I, respectively, in such a way that BJ = GI = b,
which is also EF . Then AH = IJ = BG = a − b. But HF is also a − b. Therefore the rectangle
BJIG is congruent to the rectangle HFED. Therefore the area of the rectangle AJIH is a2 − b2.
But the base of the rectantle is AJ = a + b and the height of the rectangle is IJ = a − b. Therefore
a2 − b2 = (a+ b)(a− b).



4. Exercises 2.5.2 and 2.5.3.

Solution 4. For 2.5.2: Suppose that you have a triangle ABC with sides a, b, c such that b2 + c2 = a2

and that the triangle is not a right triangle. Consider the perpendicular toAB throughA. Now intersect
this perpendicular line with the circle centered at A with radius AC. Let D be the intersection above
AB. Then AD = AC = b and AD ⊥ AB. Since DAB is a right triangle and AB = c and AD = b,
then by the Pythagorean Theorem AD2 + AB2 = BD2, so BD2 = b2 + c2 = a2. Therefore BD = a.
But then 4DAB ∼= 4CAB by SSS. Therefore ]DAB = ]CAB = 90◦. This contradicts that 4CAB
is not a right triangle.

For 2.5.3: Suppose a, b, c > 0 and a2 + b2 = c2. We want to show that there exist a triangle with
lengths a, b, c. We need to show that a + b > c, a + c > b, and b + c > a. Since a2 + b2 = c2 and
a, b > 0, then c2 > a2, and c2 > b2. So c > a and c > b. Then b+ c > a+ b > a, and a+ c > a+ b > b.
Therefore we have two of the three inequalities we need just from the fact that c is the biggest side
of a, b, c. The tricky inequality is showing that a + b > c. For the sake of contradiction suppose that
a+ b ≤ c. Then (a+ b)2 ≤ c2, so

a2 + 2ab+ b2 ≤ c2

a2 + 2ab+ b2 ≤ a2 + b2

2ab ≤ 0.

But this is impossible. Therefore a+ b > c. We have proved that there is a triangle with such lengths.

5. Exercises 2.5.4 and 2.5.5.

Solution 5. For 2.5.4: Draw a line of length 1 with vertices A, B. Now draw a perpendicular line
to AB through A. Find a point C in this perpendicular line such that AC =

√
2. Then by the

Pythagorean theorem, BC =
√

3.

For 2.5.5: Suppose that you have built 1 and
√
n, let’s built

√
n+ 1. Do the same process as above

but make AC =
√
n. Then by Pythagoras, BC =

√
n+ 1. Therefore, by induction we can make all

lengths
√
n for any natural number n.

6. Let ABC be a right triangle with ∠A = 90◦. Let Y and Z be the midpoints of segments AC and AB,
respectively. Let BY =

√
73 and CZ = 2

√
13. Find the length of BC.

Solution 6. Let AB = c and AC = b. Then AZ = c/2 and AY = b/2. By Pythagoras we have:

52 = (2
√

13)2 = CZ2 = AC2 +AZ2 = b2 +
c2

4
,



73 = (
√

73)2 = BY 2 = AY 2 +AB2 =
b2

4
+ c2.

Adding these two equations we get

125 =
5

4

(
b2 + c2

)
=

5

4
BC2.

Therefore BC2 = 100, so BC = 10.

7. Let ABCDE be a (not necessarily regular) five point star. Find the sum (with proof)

∠A+ ∠B + ∠C + ∠D + ∠E.

A B

C

D

E

Solution 7. Starting with the intersection of AD with BE, label the points in the inner pentagon
clockwise as F,G,H, I, J . Consider the triangle BFD. Then

]BFD = 180◦ − ∠B − ∠D.

Similarly

]AGC = 180◦ − ∠A− ∠C,

]EHB = 180◦ − ∠E − ∠B,

]DIA = 180◦ − ∠D − ∠A,

]CJE = 180◦ − ∠C − ∠E.

Adding these 5 equations we get that the sum of the interior angles of the pentagon is

5(180)− 2(∠A+ ∠B + ∠C + ∠D + ∠E).

But we know that the angles of a pentagon add up to (5− 2)(180) = 3(180) = 540. Therefore

540 = 900− 2(∠A+ ∠B + ∠C + ∠D + ∠E).

Therefore

∠A+ ∠B + ∠C + ∠D + ∠E =
900− 540

2
=

360

2
= 180.

8. Prove or disprove: For triangles ABC and A′B′C ′ we know that AB = A′B′, AC = A′C ′ and
∠BCA = ∠B′C ′A′. Then they must be congruent.

Solution 8. They are not necessarily congruent. Indeed consider the figure below. 4ACD has sides
AC and AD = BC, and it also has the angle ]CAD = ]CAB. Now 4ACB has sides AC and AB
and the angle ]CAB. So 4ACD and 4ACB have two equal sides and an equal angle, yet they are
not congruent to each other.



BONUS What is the least possible area of a triangle 4ABC with altitudes satisfying ha ≥ 3, hb ≥ 4, hc ≥ 5?
Note: ha is the height of the triangle when BC is the base, hb is the height when AC is the base, and
hc is the height when AB is the base.

Solution 9. First let’s consider right triangles. If the base of the triangles are ha = 3 and hb = 4,
then the hypotenuse is 5 and then by areas we have 3 × 4 = 5 × hc, so hc = 12/5 < 5. So this one
doesn’t work.

If the base of the triangles are ha = 3 and hc = 5, then the hypotenuse is
√

34. Using areas we have
3× 5 =

√
34hb. So hc = 15/

√
34 < 4 because 16× 34 = 544 > 225 = 152.

The last option is a right triangle with bases hb = 4 and hc = 5. Then 4 × 5 = ha ×
√

41. Therefore
ha = 20√

41
> 3 because 9 × 41 = 369 < 400 = 202. Therefore one possible triangle is a right triangle

with bases 4 and 5. This triangle has area 10.

Now we will prove that 10 is the smallest possible area. Consider the height hb ≥ 4. Since AB is a
hypotenuse for the triangle with height AB, then c = AB ≥ 4. But then the area of ABC is

(ABC) =
c× hc

2
≥ c× 5

2
≥ 4× 5

2
= 10.

Therefore the area is always at least 10 and we created a triangle that works with area 10. Hence the
minimal area is 10.


