Geometry Homework 3 Solutions

Enrique Treviño

September 13, 2016

1. Exercises 2.7.2, 2.7.3, 2.7.4.

Solution 1. For 2.7.2: Start with a rectangle $A B C D$. Now prolong the line $B A$ in the direction of A and choose a point E. Now let F be the midpoint of E and B. Draw the circle Γ centered at F with radius $B F$. Also prolong $D A$ upwards. Let G be the intersection of $D A$ and Γ. Now draw the square of side length $B G$. Then the square $B G I H$ has the same area as the rectangle $A B C D$ (proven in the proof of the Pythagorean theorem).

For 2.7.3: Suppose you have a square of side length a and a square of side length b. Now build a right triangle with base b and height a. Then the hypotenuse satisfies that $a^{2}+b^{2}=c^{2}$. Therefore, the square formed with side length equal to the hypotenuse has the same area as the sum of the area of the square with side length a plus the square with side length b.
For 2.7.4: Suppose you have an n-gon. Then you can cut the n-gon into $n-2$ triangles. Let's call them $T_{1}, T_{2}, \ldots, T_{n-2}$. Let b_{i} and h_{i} be the base and height of triangle T_{i}, respectively. Then the area of T_{i} is the same as the area of a rectangle with base b_{i} and height $h_{i} / 2$. Therefore we can represent it as the area of a rectangle. But as shown in 2.7 .2 , we can then translate this into the area of a square. Therefore, the $n-2$ triangles can be transformed (with straightedge and compass) into $n-2$ squares $S_{1}, S_{2}, \ldots, S_{n-2}$ where the area of S_{i} is the same as the area of T_{i}. To complete the proof we will need to use 2.7.3 multiple times. Since the sum of two squares can be represented by one square, then we can pair up two squares and have one. At first we replace $S_{1}+S_{2}$ with S_{1}^{\prime}. Now replace $S_{1}^{\prime}+S_{3}$ with S_{2}^{\prime}. Continue until you are left with one square at the end (if you keep labelling the same way, the last one will be called S_{n-3}^{\prime}). This last square has the same area as the sum of the areas of the original triangles, which is the same as the area of the original n-gon.
2. Exercises 2.8.1, 2.8.2 and 2.8.3.

Solution 2. For 2.8.1: Consider the following figure:

Figure 1: Pentagon with side length 1 and diagonals of length x

Since $D E=A B, C D=B C$ and $\measuredangle A B C=\measuredangle C D E$, then $\triangle C D E \cong \triangle C B A$. Then $\measuredangle C E D=$ $\measuredangle B A C$. Therefore $E C \| A B$. Then by alternate interior angles $\measuredangle C E B=\measuredangle E B A$ and $\measuredangle E C A=\measuredangle C A B$. Therefore $\triangle C E F \sim \triangle A B F$. This implies that

$$
\begin{equation*}
\frac{C E}{A B}=\frac{E F}{B F} \tag{1}
\end{equation*}
$$

Now since $B C=A B$, then $\measuredangle A C B=\measuredangle B A C$. But $\measuredangle B A C=\measuredangle A C E$. But $\measuredangle B A C=\measuredangle C E D$. Therefore $\measuredangle A C E=\measuredangle C E D$. Analogously $\measuredangle B E C=\measuredangle E C D$. Using the common side $E C$ we can conclude by $A S A$ that $\triangle E C D \cong \triangle E C F$. Therefore $E F=E D=1$. Since $E B=E C$ by symmetry, we have that $B F=x-1$.
Now equation (1) translates to

$$
\frac{x}{1}=\frac{1}{x-1}
$$

Therefore $x^{2}-x-1=0$.
For 2.8.2: By the quadratic formula we have

$$
x=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}
$$

Since $1-\sqrt{5}<0$, then x must be $\frac{1+\sqrt{5}}{2}$.
For 2.8.3: The following diagram is a construction of a pentagon of side length $A B=1$ using only straightedge and compass:
The construction goes as follows. Extend $A B$. Now find C such that $A B=B C$ (use the compass with center at B and radius $A B$). Now draw the perpendicular line to $A B$ through C. Now find D such that $C D=1$. By Pythagoras we have that $A D=\sqrt{1+2^{2}}=\sqrt{5}$. Extend $A D$ and pick a point E such that $D E=1$ (use the compass centered at D with radius $D C$). Then $A E=1+\sqrt{5}$. Find the midpoint of $A E$ and call it F. Then $A F=\frac{1+\sqrt{5}}{2}$. Draw the circle centered at A of radius $A F$ and call it Γ_{1}. Intersect it with the circle centered at B of radius $A B$. Let the intersection be G. Then $B G=1$ and $A G=\frac{1+\sqrt{5}}{2}$. This is the main step in the construction since we have built the points equivalent to $C E D$ in Figure 1. One could proceed similarly around the pentagon to find H and I. However, Figure 2 proceeds in a more economical fashion (with less vertices and circles). The rest of the construction goes as follows:
The diagonal of a pentagon appears twice for each vertex, so Γ_{1} will intersect twice with the pentagon. We can draw a circle centered at G with radius 1 and the intersection with Γ_{1} will create another point of the pentagon (which we'll call H). Now, thinking from the point of view of G, we have only drawn the diagonal $G A$. If we draw the circle of radius $G A$ centered at G and intersect it with the circle centered at A of radius $A B$ we get the final point I (this creates the diagonal $G I$). Now we have the five vertices that form a pentagon.

Figure 2: Straightedge and compass construction of a pentagon of side length 1
3. Find the distances denoted by question marks in the given diagrams.

$$
A P=\sqrt{10} \quad A B \| C D
$$

B_{1}, C_{1} midpoints of sides

Solution 3. In the top left figure: Since $A B \| C D$, then $\measuredangle D C A=\measuredangle P A B$ and $\measuredangle C D B=\measuredangle D B A$. Therefore $\triangle D C P \sim \triangle B A P$. Then

$$
\frac{P C}{A P}=\frac{C D}{A B}=\frac{3}{7}
$$

Therefore

$$
P C=\frac{3}{7} A P=\frac{3}{7} \sqrt{10}
$$

In the top right figure: Since B_{1} and C_{1} are midpoints, then $\frac{A B_{1}}{A B}=\frac{A C_{1}}{A C}=\frac{1}{2}$. Then, by Thales, $B_{1} C_{1} \| B C$. Therefore $\triangle A B_{1} C_{1} \sim \triangle A B C$. Therefore

$$
\frac{B_{1} C_{1}}{B C}=\frac{1}{2} .
$$

Then $B_{1} C_{1}=3$.

In the bottom left figure: $\measuredangle A C B=\measuredangle A D E$. Then $\triangle A C B \sim \triangle A D E$ (note that they share the angle $\measuredangle E A D$ and they have an equal angle). Then

$$
\frac{B C}{A C}=\frac{E D}{A D}=\frac{5}{\frac{9}{2}}=\frac{10}{9}
$$

Therefore

$$
B C=\frac{10}{9} A C=\frac{30}{9}=\frac{10}{3}
$$

In the bottom right figure: We have

$$
\triangle A B C \sim \triangle A_{0} B A \sim \triangle A_{0} A C
$$

Therefore

$$
\frac{A_{0} B}{A B}=\frac{A B}{B C}
$$

Then $A B^{2}=A_{0} B \times B C=3 \times 8=24$. Therefore $A B=\sqrt{24}$.
We also have

$$
\frac{A_{0} C}{A C}=\frac{A C}{B C}
$$

Then $A C^{2}=A_{0} C \times B C=5 \times 8=40$. Therefore $A C=\sqrt{40}$.
By area of the triangle we have $A_{0} A \times B C=A B \times A C$. Therefore

$$
A_{0} A=\frac{\sqrt{24} \sqrt{40}}{8}=\sqrt{15}
$$

4. Find the distances denoted by question marks in the given diagrams.

Solution 4. Figure in the top left: Since $A B \| C D$, then $\triangle A B P \sim \triangle C D P$. Then

$$
\left(\frac{C D}{A B}\right)^{2}=\frac{(D C P)}{(A B P)}=\frac{16}{4}=4
$$

Then $C D=\sqrt{4(A B)^{2}}=6$.
Figure in the top right: Since $\measuredangle C D P=\measuredangle P A B$ and $\measuredangle C P D=\measuredangle B P A$, then $\triangle D C P \sim \triangle A B P$. Therefore

$$
\frac{A P}{P D}=\frac{B P}{P C}=\frac{7}{6}
$$

Then $A P=5 \times\left(\frac{7}{6}\right)=\frac{35}{6}$.
Figure in bottom left: $\measuredangle T A B=\measuredangle A C B$ and $\triangle A B T$ and $\triangle A C T$ share the angle $\measuredangle A T C$. Therefore, $\triangle T A B \sim \triangle T C A$. Therefore

$$
\frac{A T}{B T}=\frac{T C}{A T}
$$

Then $A T^{2}=T C \times B T=8 \times 2=16$. Therefore $A T=4$.
Figure in bottom right: $\triangle A D P \sim \triangle D C P$ so

$$
\frac{C D}{C P}=\frac{A D}{P D}=\frac{3}{5} .
$$

Then $C D=\frac{3}{5} P C$.
We also have that $\triangle P B A \sim \triangle P C B$, so

$$
\frac{P C}{B C}=\frac{P B}{A B}=\frac{5}{4}
$$

Then

$$
P C=B C \times\left(\frac{5}{4}\right)=\frac{30}{4}=\frac{15}{2} .
$$

Therefore

$$
C D=\frac{3}{5} P C=\left(\frac{3}{5}\right)\left(\frac{15}{2}\right)=\frac{9}{2}
$$

5. In a triangle $A B C$, a median is a line from a vertex to the midpoint of the opposite side. Prove that the three medians of $\triangle A B C$ intersect at a point G. Furthermore, show that if the medians are $A D, B E, C F$, then $A G=2 G D, B G=2 G E$, and $C G=2 G F$.

Solution 5. Let D, E, F be the midpoints of $B C, A C$, and $A B$, respectively. Consider the intersection of $A D$ with $B E$ and call it G.

Since E is the midpoint of $A C$ and D is the midpoint of $B C$ then $A E / A C=1 / 2=B D / B C$. Therefore by Thales, $E D \| A B$. But then $\triangle E D G \sim \triangle B A G$. Therefore

$$
\frac{A G}{G D}=\frac{B G}{G E}=\frac{A B}{E D}=2
$$

This means that $A G=2 G D$ and $B G=2 G E$.
Now suppose that the intersection of $A D$ with $C F$ is G^{\prime}. Then by analogous methods we have $A G^{\prime} / G^{\prime} D=C G^{\prime} / G^{\prime} F=2$. But then G and G^{\prime} are points on $A D$ satisfying that $A X / X D=2$. There is only one point that is $2 / 3$ of the way from A to D. Therefore $G=G^{\prime}$. Therefore the three medians intersect at a point G and $A G=2 G D, B G=2 G E$, and $C G=2 G F$.
6. Let $A_{1} \ldots A_{n}$ be a regular n-gon. Find the inscribed angles corresponding to the following arcs (shorter ones):
(a) $n=4, A_{1} A_{2}$
(b) $n=5, A_{2} A_{4}$
(c) $n=6, A_{1} A_{4}$
(d) $n=12, A_{3} A_{7}$
(e) $n=8, A_{1} A_{4}$
(f) $n=45, A_{2} A_{13}$

Solution 6. Suppose you have a regular n-gon and we want to find the inscribed angle for the arc $A_{i} A_{j}$ (with $i<j$). For $A_{i} A_{i+1}$ the central angle is $\frac{360}{n}$ (since the center of the polygon is cut in n pieces). Then the central angle of the $\operatorname{arc} A_{i} A_{j}$ is $\frac{360(j-i)}{n}$. So the inscribed angle is $\frac{180(j-i)}{n}$ in degrees which looks prettier in radians as $\frac{(j-i) \pi}{n}$.
Therefore the answers (in degrees) are
(a) $\frac{180}{4}=45^{\circ}$.
(b) $\frac{180 \times 2}{5}=72^{\circ}$.
(c) $\frac{180 \times 3}{6}=90^{\circ}$.
(d) $\frac{180 \times 4}{12}=60^{\circ}$.
(e) $\frac{180 \times 3}{8}=67.5^{\circ}$.
(f) $\frac{180 \times 11}{45}=44^{\circ}$.
7. Find the angles denoted by question marks in the following diagrams. Give the explanation of why those angles are correct.

Solution 7. For the top left: $A B C D$ is cyclic because $\measuredangle C D B=\measuredangle C A B$ and they open the same chord. Therefore

$$
\measuredangle D A C=\measuredangle D B C=38^{\circ}
$$

For the top right: $\measuredangle C D A+\measuredangle C B A=42+18+83+37=180$. Therefore $A B C D$ is cyclic. Then the mystery angle is

$$
\frac{\widehat{A D}}{2}+\frac{\widehat{C B}}{2}=37+18=55^{\circ}
$$

For the bottom left: $\measuredangle A D C=180-53$ because $C D P$ is a line. $\measuredangle C B A=31+22=53$. Therefore $\measuredangle C B A+\measuredangle A D C=180^{\circ}$. Then $A B C D$ is cyclic. Therefore

$$
\begin{aligned}
\measuredangle C P A & =\measuredangle C A B-\measuredangle D B A \\
& =(180-(\measuredangle A C B+\measuredangle C B A))-22 \\
& =180-88-53-22 \\
& =17^{\circ} .
\end{aligned}
$$

For the bottom right: Since $\triangle D P C \sim \triangle A P B$, then $\measuredangle D C A=\measuredangle D B A$. Therefore $A B C D$ is cyclic. Then

$$
\measuredangle D B C=\measuredangle D A C=180-\measuredangle A D C-\measuredangle D C A=180-40-52-35=53^{\circ} .
$$

8. Find the angles denoted by question marks in the following diagrams. Give the explanation of why those angles are correct.

Find internal angles in $\triangle D E F$

Solution 8. For the top left: Because two opposite angles are 90°, then the quadrilateral is cyclic. Suppose we label the quadrilateral $A B C D$ where A is the top vertex and we label clockwise. Then $\measuredangle A C D=31$ because $A B C D$ is cyclic. Then

$$
\measuredangle A D C=180-36-31=113 .
$$

For the top right: From the diagram $A D C B$ is cyclic because the vertices are contained in the same circle. Then $\measuredangle D C E=180-\measuredangle D C B=\measuredangle D A B=100$. Also $\measuredangle D F E=80$ because $A B \| E F$. Then $\measuredangle D C E+\measuredangle D F E=180$. Therefore $C E F D$ is cyclic. Then

$$
\measuredangle C D E=\measuredangle C F E=80-60=20^{\circ} .
$$

For the bottom left: Since $C D=E D$, then $\measuredangle E A D=\measuredangle D B C$ because they overlook chords of the same length. But that means $\measuredangle G A F=\measuredangle G B F$. Both of these angles open the chord $F G$. Therefore $A B G F$ is cyclic. Therefore

$$
\measuredangle G F D=180-\measuredangle G F A=\measuredangle G B A=21+\measuredangle F B A=21+\measuredangle A D C=21+36=57
$$

For the bottom right: Since $I E \perp A C, I D \perp B C, I F \perp A B$, then $I E C D, I D B F, A F I E$ are all cyclic (they have two right angles as opposite angles). Therefore

$$
\begin{aligned}
& \measuredangle E I D=180-50=130 \\
& \measuredangle F I D=180-78=102, \\
& \measuredangle F I E=180-\measuredangle B A C=180-(180-(78+50))=78+50=128 .
\end{aligned}
$$

But $I D=I E=I F=r$ because I is the incenter. Therefore $\triangle I E D, \triangle I E F, \triangle I D F$ are all isosceles and we can find

$$
\begin{aligned}
& \measuredangle I D E=\measuredangle I E D=\frac{180-130}{2}=25 . \\
& \measuredangle I E F=\measuredangle I F E=\frac{180-128}{2}=26 . \\
& \measuredangle I F D=\measuredangle I D F=\frac{180-102}{2}=39 .
\end{aligned}
$$

Then we can conclude

$$
\begin{aligned}
& \measuredangle F D E=\measuredangle I D E+\measuredangle I D F=25+39=64 . \\
& \measuredangle F E D=\measuredangle I E F+\measuredangle I E D=26+25=51 . \\
& \measuredangle E F D=\measuredangle I F E+\measuredangle I F D=26+39=65 .
\end{aligned}
$$

BONUS Let $A B C$ be a right triangle with $\measuredangle B A C=90^{\circ}$ satisfying that $B C=10$ and $A D=6$, where $A D \perp B C$ and D is in $B C$. Prove that no such triangle exists.

Solution 9. Let M be the midpoint of $B C$. Since $\triangle A B C$ is a right triangle, then $A M=B M=C M=$ 5. However $A D \perp B D$ so $\triangle A D M$ is a right triangle with hypotenuse $A M$. Therefore $A M>A D=6$. But that is a contradiction since $A M=5$. Therefore this triangle does not exist.

