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1. Exercises 3.3.2, 3.3.3, 3.3.4, and 3.3.5. Note that the exercises have some typos in the textbook. Here
are the corrections: In 3.3.2, one of the lines should read:

|OP | = x1, |PQ| =
√

(x2 − x1)2 + y22 , |OQ| =
√
x22 + y22 .

In 3.3.3 the equation should read:

(|OP |+ |PQ|)2 − |OQ|2 = 2x1

(√
(x2 − x1)2 + y22 − (x2 − x1)

)
.

Solution 1. For 3.3.2:

OP =
√

(x1 − 0)2 + (0− 0)2 =
√
x21 = |x1| = x1 because x1 > 0.

PQ =
√

(x2 − x1)2 + (y2 − 0)2 =
√

(x2 − x1)2 + y22 .

OQ =
√

(x2 − 0)2 + (y2 − 0)2 =
√
x22 + y22 .

For 3.3.3:

(OP + PQ)2 − (OQ)2 = OP 2 + PQ2 + 2 ·OP · PQ−OQ2

= x21 + (x2 − x1)2 + y22 + 2x1

√
(x2 − x1)2 + y22 − (x22 + y22)

= x21 + x22 − 2x1x2 + x21 + 2x1

√
(x2 − x1)2 + y22 − x22

= 2x21 + 2x1

(√
(x2 − x1)2 + y22 − x2

)
= 2x1

(√
(x2 − x1)2 + y22 − (x2 − x1)

)
.

For 3.3.4: Suppose y2 6= 0. Then√
(x2 − x1)2 + y22 >

√
(x2 − x1)2 + 0 = |x2 − x1|.

But then the right hand side of the equation in 3.3.3 is positive (since x1 is positive and |x2 − x1| ≥
x2 − x1).

For 3.3.5: If y2 = 0, then the coordinate of Q is (x2, 0), so O,P,Q are all in the x-axis and hence they
are collinear. That means they don’t form a triangle.

2. Exercise 4.3.1.



Solution 2. Suppose the vectors t,u,v,w are in order. The diagonals intersect each other in the
center of the square and they bisect each other. Therefore their intersection is the midpoint of the
diagonal v− t. This point is the average of the two vectors, i.e., 1

2 (v + t) . But the intersection is also
the midpoint of the diagonal w − u which is the average of the two vectors 1

2 (w + u). Therefore

1

2
(v + t) =

1

2
(w + u) .

That means

1

4
(t + u + v + w) =

1

2

(
t + v

2
+

u + w

2

)
=

1

2
(2)

(
t + v

2

)
=

1

2
(v + t) ,

which is the center of the square. Therefore we’ve proved what we set out to prove.

3. Exercises 4.3.2, 4.3.3, 4.3.4, and 4.3.5.

Solution 3. For 4.3.2: The centroid of the face opposite t consists of the triangle formed with the
vectors u,v,w. Therefore, it’s centroid is u+v+w

3 . The other faces have the following centroids:

u + v + t

3
,

u + t + w

3
,

v + w + t

3
.

For 4.3.3: The point 3/4 of the way from t to the centroid of the opposite face is

3

4

(
u + v + w

3
− t

)
+ t =

3

4

(
u + v + w

3

)
+ t− 3

4
t =

u + v + w + t

4
.

For 4.3.4: The calculations are analogous to the one in 4.3.3.

For 4.3.5: We have that the point 1
4 (u + v + w + t) is in the four lines connecting vertices to the

centroids in the opposite face. Therefore these four lines concur.

4. Exercises 4.4.3 and 4.4.4. The equation in 4.4.4 should read as(
w − u + v

2

)
· (u− v) = 0

Solution 4. For 4.4.3: If w is equidistant from u and v, then |w−u| = |w−v|. Therefore |w−u|2 =
|w − v|2. That means

(w − u) · (w − u) = (w − v) · (w − v).

But then

w ·w − 2w · u + u · u = w ·w − 2wv + v · v
|u|2 − 2w · u = |v|2 − 2w · v. (1)

For 4.4.4: From (1) it follows that

|u|2 − |v|2 − (2w · u− 2w · v) = 0

(u− v) · (u + v)− 2w · (u− v) = 0

(u + v − 2w) · (u− v) = 0.

Since we can divide by a scalar, if we divide by -2, we get(
w − u + v

2

)
· (u− v) = 0.

The term w − u+v
2 is a vector from the midpoint of u and v to the vector w. The equation says that

this vector is perpendicular to the vector u − v (which describes the line from v to u). Therefore w
has to be in the perpendicular line bisector of u and v.



5. Exercises 4.5.2 and 4.5.3.

Solution 5. For 4.5.2:

(v + u) · (v − u) = v · v − v · u + u · v − u · u = |v|2 − |u|2.

For 4.5.3: The vector from −u to v is v − (−u) = v + u. The vector from u to v is v − u. Then
the dot product of those vectors, by 4.5.2, is |v|2 − |u|2. But, u and v are vectors in the same circle,
so |u| = |v|. Therefore |v|2 − |u|2 = 0. Therefore the dot product is zero and hence the vectors are
perpendicular.

6. Exercises 4.6.2, 4.6.3, and 4.6.4.

Solution 6. For 4.6.2:

(u + xv) · (u + xv) = u · u+ 2x(u · v) + x2v · v
= |u|2 + 2x(u · v) + x2|v|2. (2)

The left hand side of (2) is the square of the length of a vector and therefore nonnegative. That means
that

|u|2 + 2x(u · v) + x2|v|2 ≥ 0 for any real number x. (3)

For 4.6.3: Suppose Ax2 + Bx + C ≥ 0 for all x ≥ 0. Let f(x) = Ax2 + Bx + C. Since f(x) is never
negative, f(x) = 0 has at most one solution. Indeed, if f(x) = 0 for two different values of x called x1
and x2 with x1 < x2, then f(x) (which graphs as a parabola) would cross the x-axis into the negative
side in either (−∞, x1), (x1, x2), or (x2,∞). In summary f(x) = 0 has at most one solution. However,
we know by the quadratic formula, that f(x) = 0 has the following solutions:

x =
−B ±

√
B2 − 4AC

2A
.

The only way this does not describe two solutions is because B2 − 4AC = 0 or because
√
B2 − 4AC

does not exist, which implies that B2 − 4AC < 0. Therefore

B2 − 4AC ≤ 0. (4)

For 4.6.4: In (3), let f(x) = |v|2x2 + 2(u · v)x+ |u|2. Let A = |v|2, B = 2(u · v), and C = |u|2. Then
by applying (4), we get

4(u · v)2 − 4|v|2|u|2 ≤ 0

(u · v)2 ≤ |u|2|v|2

|u · v| ≤ |u||v|.

Remark 1. The proof also gives us information of when we have equality in Cauchy-Schwarz. We
have f(x) ≥ 0 for all x. From the work, we see that the only way we get equality is if B2 − 4AC = 0.
But that means that f(x) = 0 has a solution. But

f(x) = (u + xv) · (u + xv) = |u + xv|2.

That is, f(x) is the square of the length of a vector. The only way it can be zero, is if the vector itself
is zero. Therefore

u + xv = 0 ⇒ u = −xv that is u is a scalar multiple of v.

7. Let P be a point inside square ABCD such that PA = 2, PB = 3, PC = 4. Compute PD.



Solution 7. Let A be in the origin, B be at (s, 0), D = (0, s) and C = (s, s), where s is the side length
of the square. Let P = (x, y). Then we have

PA2 = x2 + y2 = 4

PB2 = (x− s)2 + y2 = 9

PC2 = (x− s)2 + (y − s)2 = 16.

Note

PD2 = x2 + (y − s)2 = (x2 + y2) + ((x− s)2 + (y − s)2)− ((x− s)2 + y2) = 4 + 16− 9 = 11.

Therefore PD =
√

11.

8. Let ABCD be a rhombus with a point P on the side BC and Q on the side CD such that BP = CQ.
Prove that the centroid of the triangle APQ lies on the segment BD.

Solution 8. Move the rhombus so that its diagonals intersect at the origin. Since it’s a rhombus, the
diagonals bisect each other so A + C = B + D = 0. Since P is on BC, then P = B + (C − B)t for
some nonnegative real number t. Since Q is in CD then Q = C + (D−C)s for some nonnegative real
number s. We know that |BP | = |CQ|, but

|BP | = |P −B| = |(C −B)t| = |C −B|t,

and
|CQ| = |Q− C| = |(D − C)s| = |D − C|s.

Since it’s a rhombus we have |C − B| = |D − C|. Since |BP | = |CP |, we can conclude that t = s.
Then the centroid of APQ is

A+ P +Q

3
=
A+B + (C −B)t+ C + (D − C)t

3
=

(A+ C) +B + (D −B)t

3

= B +
−2B + (D −B)t

3

= B +
2D + (D −B)t

3

= B +

(
t+ 1

3

)
(D −B).

For the last equality we used that 2D = D−B. Since the centroid of APQ is of the form B+α(D−B),
then it’s on the line BD.

BONUS Let 4ABC be an equilateral triangle. Suppose P is a point inside the triangle satisfying that AP =
3, BP = 4, and CP = 5. Find the length of the side of equilateral triangle, i.e., find AB.

Solution 9. Suppose the equilateral triangle has side `. Now, the height of the equilateral triangle is√
32`. We can place the equilateral triangle in the Cartesian plane in a way that the midpoint of a

side length is in the origin. Then the coordinates are A = (−`/2, 0), B = (`/2, 0), C = (0,
√

3/2`). Let
P = (x, y). Therefore

AP 2 =

(
x+

`

2

)2

+ y2 = x2 + `x+
`2

4
+ y2 = 9

BP 2 =

(
x− `

2

)2

+ y2 = x2 − `x+
`2

4
+ y2 = 16

CP 2 = x2 +

(
y −
√

3`

2

)2

= x2 + y2 −
√

3`y +
3`2

4
= 25.



Then, if we subtract AP 2 −BP 2, we get

−7 = AP 2 −BP 2 = 2`x ⇒ 4`2x2 = (−7)2 = 49 ⇒ 12`2y2 = 147. (5)

If we instead add AP 2 +BP 2, we get

25 = 2(x2 + y2) +
`2

2
⇒ x2 + y2 =

25

2
− `2

4
. (6)

Plugging this last equation into the equation of CP 2 we get

25 =
25

2
− `2

4
−
√

3`y +
3`2

4
25

2
= −
√

3`y +
`2

2

2
√

3`y = −25 + `2

12`2y2 = (−25 + `2)2 = 625− 50`2 + `4. (7)

Adding (5) and (7) we get

12`2(x2 + y2) = 147 + 625− 50`2 + `4 = 772− 50`2 + `4.

Plugging in (6) we get

12`2(x2 + y2) = 12`2
(

25

2
− `2

4

)
= `2

(
150− 3`2

)
= 150`2 − 3`4.

Therefore

150`2 − 3`4 = 772− 50`2 + `4

4`4 − 200`2 + 772 = 0

`4 − 50`2 + 193 = 0.

Therefore

`2 =
50±

√
502 − 4 · 193

2
= 25±

√
252 − 193 = 25±

√
432 = 25± 12

√
3.

Since
√

25− 12
√

3 < 3, then P would be outside the triangle in that case. Therefore

` =

√
25 + 12

√
3.

Alternative Solution: Rotate the figure 60 degrees clockwise with center at A. Then B goes to C
and C goes to a new point C ′ while A stays put. Also, P goes to P ′ as in the figure.



Then by construction BP = CP ′, AP ′ = AP and C ′P ′ = CP . Since AP ′ = AP and ]PAP ′ = 60◦,
then 4APP ′ is equilateral. Therefore PP ′ = AP . Then the triangle CP ′P has side lengths CP ′ =
BP = 4, PP ′ = AP = 3, and CP = 5. Since 32 + 42 = 52, then 4CP ′P is a right triangle. But then

]CP ′A = ]CP ′P + ]PP ′A = 90◦ + 60◦ = 150◦.

Then by Law of Cosines we have

`2 = AC2 = CP ′2 +AP ′2 − 2AP ′CP ′ cos(150◦) = 42 + 32 − 2(3)(4)

(
−
√

3

2

)
= 25 + 12

√
3.

Therefore ` =
√

25 + 12
√

3.


