Geometry Homework 4 Solutions

Enrique Treviño

October 7, 2016

1. Exercises 3.3.2, 3.3.3, 3.3.4, and 3.3.5. Note that the exercises have some typos in the textbook. Here are the corrections: In 3.3 .2 , one of the lines should read:

$$
|O P|=x_{1}, \quad|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}}, \quad|O Q|=\sqrt{x_{2}^{2}+y_{2}^{2}} .
$$

In 3.3.3 the equation should read:

$$
(|O P|+|P Q|)^{2}-|O Q|^{2}=2 x_{1}\left(\sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}}-\left(x_{2}-x_{1}\right)\right) .
$$

Solution 1. For 3.3.2:

$$
\begin{gathered}
O P=\sqrt{\left(x_{1}-0\right)^{2}+(0-0)^{2}}=\sqrt{x_{1}^{2}}=\left|x_{1}\right|=x_{1} \text { because } x_{1}>0 \\
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-0\right)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}} \\
O Q=\sqrt{\left(x_{2}-0\right)^{2}+\left(y_{2}-0\right)^{2}}=\sqrt{x_{2}^{2}+y_{2}^{2}}
\end{gathered}
$$

For 3.3.3:

$$
\begin{aligned}
(O P+P Q)^{2}-(O Q)^{2} & =O P^{2}+P Q^{2}+2 \cdot O P \cdot P Q-O Q^{2} \\
& =x_{1}^{2}+\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}+2 x_{1} \sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}}-\left(x_{2}^{2}+y_{2}^{2}\right) \\
& =x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}+x_{1}^{2}+2 x_{1} \sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}}-x_{2}^{2} \\
& =2 x_{1}^{2}+2 x_{1}\left(\sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}}-x_{2}\right) \\
& =2 x_{1}\left(\sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}}-\left(x_{2}-x_{1}\right)\right)
\end{aligned}
$$

For 3.3.4: Suppose $y_{2} \neq 0$. Then

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+y_{2}^{2}}>\sqrt{\left(x_{2}-x_{1}\right)^{2}+0}=\left|x_{2}-x_{1}\right|
$$

But then the right hand side of the equation in 3.3.3 is positive (since x_{1} is positive and $\left|x_{2}-x_{1}\right| \geq$ $x_{2}-x_{1}$).
For 3.3.5: If $y_{2}=0$, then the coordinate of Q is $\left(x_{2}, 0\right)$, so O, P, Q are all in the x-axis and hence they are collinear. That means they don't form a triangle.
2. Exercise 4.3.1.

Solution 2. Suppose the vectors $\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ are in order. The diagonals intersect each other in the center of the square and they bisect each other. Therefore their intersection is the midpoint of the diagonal $\mathbf{v}-\mathbf{t}$. This point is the average of the two vectors, i.e., $\frac{1}{2}(\mathbf{v}+\mathbf{t})$. But the intersection is also the midpoint of the diagonal $\mathbf{w}-\mathbf{u}$ which is the average of the two vectors $\frac{1}{2}(\mathbf{w}+\mathbf{u})$. Therefore

$$
\frac{1}{2}(\mathbf{v}+\mathbf{t})=\frac{1}{2}(\mathbf{w}+\mathbf{u}) .
$$

That means

$$
\frac{1}{4}(\mathbf{t}+\mathbf{u}+\mathbf{v}+\mathbf{w})=\frac{1}{2}\left(\frac{\mathbf{t}+\mathbf{v}}{2}+\frac{\mathbf{u}+\mathbf{w}}{2}\right)=\frac{1}{2}(2)\left(\frac{\mathbf{t}+\mathbf{v}}{2}\right)=\frac{1}{2}(\mathbf{v}+\mathbf{t})
$$

which is the center of the square. Therefore we've proved what we set out to prove.
3. Exercises 4.3.2, 4.3.3, 4.3.4, and 4.3.5.

Solution 3. For 4.3.2: The centroid of the face opposite \mathbf{t} consists of the triangle formed with the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$. Therefore, it's centroid is $\frac{\mathbf{u}+\mathbf{v}+\mathbf{w}}{3}$. The other faces have the following centroids:

$$
\frac{\mathbf{u}+\mathbf{v}+\mathbf{t}}{3}, \quad \frac{\mathbf{u}+\mathbf{t}+\mathbf{w}}{3}, \quad \frac{\mathbf{v}+\mathbf{w}+\mathbf{t}}{3} .
$$

For 4.3.3: The point $3 / 4$ of the way from \mathbf{t} to the centroid of the opposite face is

$$
\frac{3}{4}\left(\frac{\mathbf{u}+\mathbf{v}+\mathbf{w}}{3}-\mathbf{t}\right)+\mathbf{t}=\frac{3}{4}\left(\frac{\mathbf{u}+\mathbf{v}+\mathbf{w}}{3}\right)+\mathbf{t}-\frac{3}{4} \mathbf{t}=\frac{\mathbf{u}+\mathbf{v}+\mathbf{w}+\mathbf{t}}{4} .
$$

For 4.3.4: The calculations are analogous to the one in 4.3.3.
For 4.3.5: We have that the point $\frac{1}{4}(\mathbf{u}+\mathbf{v}+\mathbf{w}+\mathbf{t})$ is in the four lines connecting vertices to the centroids in the opposite face. Therefore these four lines concur.
4. Exercises 4.4.3 and 4.4.4. The equation in 4.4.4 should read as

$$
\left(\mathbf{w}-\frac{\mathbf{u}+\mathbf{v}}{2}\right) \cdot(\mathbf{u}-\mathbf{v})=0
$$

Solution 4. For 4.4.3: If \mathbf{w} is equidistant from \mathbf{u} and \mathbf{v}, then $|\mathbf{w}-\mathbf{u}|=|\mathbf{w}-\mathbf{v}|$. Therefore $|\mathbf{w}-\mathbf{u}|^{2}=$ $|\mathbf{w}-\mathbf{v}|^{2}$. That means

$$
(\mathbf{w}-\mathbf{u}) \cdot(\mathbf{w}-\mathbf{u})=(\mathbf{w}-\mathbf{v}) \cdot(\mathbf{w}-\mathbf{v})
$$

But then

$$
\begin{align*}
\mathbf{w} \cdot \mathbf{w}-2 \mathbf{w} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{u} & =\mathbf{w} \cdot \mathbf{w}-2 \mathbf{w} \mathbf{v}+\mathbf{v} \cdot \mathbf{v} \\
|\mathbf{u}|^{2}-2 \mathbf{w} \cdot \mathbf{u} & =|\mathbf{v}|^{2}-2 \mathbf{w} \cdot \mathbf{v} \tag{1}
\end{align*}
$$

For 4.4.4: From (1) it follows that

$$
\begin{gathered}
|\mathbf{u}|^{2}-|\mathbf{v}|^{2}-(2 \mathbf{w} \cdot \mathbf{u}-2 \mathbf{w} \cdot \mathbf{v})=0 \\
(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})-2 \mathbf{w} \cdot(\mathbf{u}-\mathbf{v})=0 \\
(\mathbf{u}+\mathbf{v}-2 \mathbf{w}) \cdot(\mathbf{u}-\mathbf{v})=0
\end{gathered}
$$

Since we can divide by a scalar, if we divide by -2 , we get

$$
\left(\mathbf{w}-\frac{\mathbf{u}+\mathbf{v}}{2}\right) \cdot(\mathbf{u}-\mathbf{v})=0
$$

The term $\mathbf{w}-\frac{\mathbf{u}+\mathbf{v}}{2}$ is a vector from the midpoint of \mathbf{u} and \mathbf{v} to the vector \mathbf{w}. The equation says that this vector is perpendicular to the vector $\mathbf{u}-\mathbf{v}$ (which describes the line from \mathbf{v} to \mathbf{u}). Therefore \mathbf{w} has to be in the perpendicular line bisector of \mathbf{u} and \mathbf{v}.
5. Exercises 4.5.2 and 4.5.3.

Solution 5. For 4.5.2:

$$
(\mathbf{v}+\mathbf{u}) \cdot(\mathbf{v}-\mathbf{u})=\mathbf{v} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{u}=|\mathbf{v}|^{2}-|\mathbf{u}|^{2}
$$

For 4.5.3: The vector from $-\mathbf{u}$ to \mathbf{v} is $\mathbf{v}-(-\mathbf{u})=\mathbf{v}+\mathbf{u}$. The vector from \mathbf{u} to \mathbf{v} is $\mathbf{v}-\mathbf{u}$. Then the dot product of those vectors, by 4.5.2, is $|\mathbf{v}|^{2}-|\mathbf{u}|^{2}$. But, \mathbf{u} and \mathbf{v} are vectors in the same circle, so $|\mathbf{u}|=|\mathbf{v}|$. Therefore $|\mathbf{v}|^{2}-|\mathbf{u}|^{2}=0$. Therefore the dot product is zero and hence the vectors are perpendicular.
6. Exercises 4.6.2, 4.6.3, and 4.6.4.

Solution 6. For 4.6.2:

$$
\begin{align*}
(\mathbf{u}+x \mathbf{v}) \cdot(\mathbf{u}+x \mathbf{v}) & =\mathbf{u} \cdot u+2 x(\mathbf{u} \cdot \mathbf{v})+x^{2} \mathbf{v} \cdot \mathbf{v} \\
& =|\mathbf{u}|^{2}+2 x(\mathbf{u} \cdot \mathbf{v})+x^{2}|\mathbf{v}|^{2} \tag{2}
\end{align*}
$$

The left hand side of (2) is the square of the length of a vector and therefore nonnegative. That means that

$$
\begin{equation*}
|\mathbf{u}|^{2}+2 x(\mathbf{u} \cdot \mathbf{v})+x^{2}|\mathbf{v}|^{2} \geq 0 \quad \text { for any real number } x \tag{3}
\end{equation*}
$$

For 4.6.3: Suppose $A x^{2}+B x+C \geq 0$ for all $x \geq 0$. Let $f(x)=A x^{2}+B x+C$. Since $f(x)$ is never negative, $f(x)=0$ has at most one solution. Indeed, if $f(x)=0$ for two different values of x called x_{1} and x_{2} with $x_{1}<x_{2}$, then $f(x)$ (which graphs as a parabola) would cross the x-axis into the negative side in either $\left(-\infty, x_{1}\right),\left(x_{1}, x_{2}\right)$, or $\left(x_{2}, \infty\right)$. In summary $f(x)=0$ has at most one solution. However, we know by the quadratic formula, that $f(x)=0$ has the following solutions:

$$
x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

The only way this does not describe two solutions is because $B^{2}-4 A C=0$ or because $\sqrt{B^{2}-4 A C}$ does not exist, which implies that $B^{2}-4 A C<0$. Therefore

$$
\begin{equation*}
B^{2}-4 A C \leq 0 \tag{4}
\end{equation*}
$$

For 4.6.4: In (3), let $f(x)=|\mathbf{v}|^{2} x^{2}+2(\mathbf{u} \cdot \mathbf{v}) x+|\mathbf{u}|^{2}$. Let $A=|\mathbf{v}|^{2}, B=2(\mathbf{u} \cdot \mathbf{v})$, and $C=|\mathbf{u}|^{2}$. Then by applying (4), we get

$$
\begin{aligned}
4(\mathbf{u} \cdot \mathbf{v})^{2}-4|\mathbf{v}|^{2}|\mathbf{u}|^{2} & \leq 0 \\
(\mathbf{u} \cdot \mathbf{v})^{2} & \leq|\mathbf{u}|^{2}|\mathbf{v}|^{2} \\
|\mathbf{u} \cdot \mathbf{v}| & \leq|\mathbf{u}||\mathbf{v}|
\end{aligned}
$$

Remark 1. The proof also gives us information of when we have equality in Cauchy-Schwarz. We have $f(x) \geq 0$ for all x. From the work, we see that the only way we get equality is if $B^{2}-4 A C=0$. But that means that $f(x)=0$ has a solution. But

$$
f(x)=(\mathbf{u}+x \mathbf{v}) \cdot(\mathbf{u}+x \mathbf{v})=|\mathbf{u}+x \mathbf{v}|^{2} .
$$

That is, $f(x)$ is the square of the length of a vector. The only way it can be zero, is if the vector itself is zero. Therefore

$$
\mathbf{u}+x \mathbf{v}=0 \quad \Rightarrow \quad \mathbf{u}=-x \mathbf{v} \quad \text { that is } \mathbf{u} \text { is a scalar multiple of } \mathbf{v}
$$

7. Let P be a point inside square $A B C D$ such that $P A=2, P B=3, P C=4$. Compute $P D$.

Solution 7. Let A be in the origin, B be at $(s, 0), D=(0, s)$ and $C=(s, s)$, where s is the side length of the square. Let $P=(x, y)$. Then we have

$$
\begin{aligned}
& P A^{2}=x^{2}+y^{2}=4 \\
& P B^{2}=(x-s)^{2}+y^{2}=9 \\
& P C^{2}=(x-s)^{2}+(y-s)^{2}=16
\end{aligned}
$$

Note

$$
P D^{2}=x^{2}+(y-s)^{2}=\left(x^{2}+y^{2}\right)+\left((x-s)^{2}+(y-s)^{2}\right)-\left((x-s)^{2}+y^{2}\right)=4+16-9=11
$$

Therefore $P D=\sqrt{11}$.
8. Let $A B C D$ be a rhombus with a point P on the side $B C$ and Q on the side $C D$ such that $B P=C Q$. Prove that the centroid of the triangle $A P Q$ lies on the segment $B D$.

Solution 8. Move the rhombus so that its diagonals intersect at the origin. Since it's a rhombus, the diagonals bisect each other so $A+C=B+D=0$. Since P is on $B C$, then $P=B+(C-B) t$ for some nonnegative real number t. Since Q is in $C D$ then $Q=C+(D-C) s$ for some nonnegative real number s. We know that $|B P|=|C Q|$, but

$$
|B P|=|P-B|=|(C-B) t|=|C-B| t
$$

and

$$
|C Q|=|Q-C|=|(D-C) s|=|D-C| s
$$

Since it's a rhombus we have $|C-B|=|D-C|$. Since $|B P|=|C P|$, we can conclude that $t=s$. Then the centroid of $A P Q$ is

$$
\begin{aligned}
\frac{A+P+Q}{3}=\frac{A+B+(C-B) t+C+(D-C) t}{3} & =\frac{(A+C)+B+(D-B) t}{3} \\
& =B+\frac{-2 B+(D-B) t}{3} \\
& =B+\frac{2 D+(D-B) t}{3} \\
& =B+\left(\frac{t+1}{3}\right)(D-B)
\end{aligned}
$$

For the last equality we used that $2 D=D-B$. Since the centroid of $A P Q$ is of the form $B+\alpha(D-B)$, then it's on the line $B D$.

BONUS Let $\triangle A B C$ be an equilateral triangle. Suppose P is a point inside the triangle satisfying that $A P=$ $3, B P=4$, and $C P=5$. Find the length of the side of equilateral triangle, i.e., find $A B$.

Solution 9. Suppose the equilateral triangle has side ℓ. Now, the height of the equilateral triangle is $\sqrt{3} 2 \ell$. We can place the equilateral triangle in the Cartesian plane in a way that the midpoint of a side length is in the origin. Then the coordinates are $A=(-\ell / 2,0), B=(\ell / 2,0), C=(0, \sqrt{3} / 2 \ell)$. Let $P=(x, y)$. Therefore

$$
\begin{aligned}
& A P^{2}=\left(x+\frac{\ell}{2}\right)^{2}+y^{2}=x^{2}+\ell x+\frac{\ell^{2}}{4}+y^{2}=9 \\
& B P^{2}=\left(x-\frac{\ell}{2}\right)^{2}+y^{2}=x^{2}-\ell x+\frac{\ell^{2}}{4}+y^{2}=16 \\
& C P^{2}=x^{2}+\left(y-\frac{\sqrt{3} \ell}{2}\right)^{2}=x^{2}+y^{2}-\sqrt{3} \ell y+\frac{3 \ell^{2}}{4}=25
\end{aligned}
$$

Then, if we subtract $A P^{2}-B P^{2}$, we get

$$
\begin{equation*}
-7=A P^{2}-B P^{2}=2 \ell x \quad \Rightarrow 4 \ell^{2} x^{2}=(-7)^{2}=49 \quad \Rightarrow 12 \ell^{2} y^{2}=147 \tag{5}
\end{equation*}
$$

If we instead add $A P^{2}+B P^{2}$, we get

$$
\begin{equation*}
25=2\left(x^{2}+y^{2}\right)+\frac{\ell^{2}}{2} \quad \Rightarrow x^{2}+y^{2}=\frac{25}{2}-\frac{\ell^{2}}{4} \tag{6}
\end{equation*}
$$

Plugging this last equation into the equation of $C P^{2}$ we get

$$
\begin{align*}
25 & =\frac{25}{2}-\frac{\ell^{2}}{4}-\sqrt{3} \ell y+\frac{3 \ell^{2}}{4} \\
\frac{25}{2} & =-\sqrt{3} \ell y+\frac{\ell^{2}}{2} \\
2 \sqrt{3} \ell y & =-25+\ell^{2} \\
12 \ell^{2} y^{2} & =\left(-25+\ell^{2}\right)^{2}=625-50 \ell^{2}+\ell^{4} . \tag{7}
\end{align*}
$$

Adding (5) and (7) we get

$$
12 \ell^{2}\left(x^{2}+y^{2}\right)=147+625-50 \ell^{2}+\ell^{4}=772-50 \ell^{2}+\ell^{4} .
$$

Plugging in (6) we get

$$
12 \ell^{2}\left(x^{2}+y^{2}\right)=12 \ell^{2}\left(\frac{25}{2}-\frac{\ell^{2}}{4}\right)=\ell^{2}\left(150-3 \ell^{2}\right)=150 \ell^{2}-3 \ell^{4}
$$

Therefore

$$
\begin{aligned}
150 \ell^{2}-3 \ell^{4} & =772-50 \ell^{2}+\ell^{4} \\
4 \ell^{4}-200 \ell^{2}+772 & =0 \\
\ell^{4}-50 \ell^{2}+193 & =0
\end{aligned}
$$

Therefore

$$
\ell^{2}=\frac{50 \pm \sqrt{50^{2}-4 \cdot 193}}{2}=25 \pm \sqrt{25^{2}-193}=25 \pm \sqrt{432}=25 \pm 12 \sqrt{3}
$$

Since $\sqrt{25-12 \sqrt{3}}<3$, then P would be outside the triangle in that case. Therefore

$$
\ell=\sqrt{25+12 \sqrt{3}}
$$

Alternative Solution: Rotate the figure 60 degrees clockwise with center at A. Then B goes to C and C goes to a new point C^{\prime} while A stays put. Also, P goes to P^{\prime} as in the figure.

Then by construction $B P=C P^{\prime}, A P^{\prime}=A P$ and $C^{\prime} P^{\prime}=C P$. Since $A P^{\prime}=A P$ and $\measuredangle P A P^{\prime}=60^{\circ}$, then $\triangle A P P^{\prime}$ is equilateral. Therefore $P P^{\prime}=A P$. Then the triangle $C P^{\prime} P$ has side lengths $C P^{\prime}=$ $B P=4, P P^{\prime}=A P=3$, and $C P=5$. Since $3^{2}+4^{2}=5^{2}$, then $\triangle C P^{\prime} P$ is a right triangle. But then

$$
\measuredangle C P^{\prime} A=\measuredangle C P^{\prime} P+\measuredangle P P^{\prime} A=90^{\circ}+60^{\circ}=150^{\circ} .
$$

Then by Law of Cosines we have

$$
\ell^{2}=A C^{2}=C P^{\prime 2}+A P^{\prime 2}-2 A P^{\prime} C P^{\prime} \cos \left(150^{\circ}\right)=4^{2}+3^{2}-2(3)(4)\left(-\frac{\sqrt{3}}{2}\right)=25+12 \sqrt{3}
$$

Therefore $\ell=\sqrt{25+12 \sqrt{3}}$.

