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1. Exercises 5.1.1, 5.1.2, and 5.1.3.

Solution 1.
For 5.1.1: The equation of the line from (−1, 1) to (n, 0) is

y =
1

−1− n
(x− n).

It crosses the y-axis when x = 0. Therefore

y = − 1

n + 1
(−n) =

n

n + 1
.

Alternative Solution: Alternatively, you could use Thales theorem. Label the points as in the
following figure:

Then, what we want to show is that OD = n
n+1 . Since OD‖AC, then by Thales Theorem

OD

AC
=

OB

BC
.

Since AC = 1, OB = n, and BC = OB + OC = n + 1, then OD = n
n+1 .

For 5.1.2: The n-th point has the form n
n+1 (where we start with 0). Now

f(y) = f

(
n

n + 1

)
=

1

2−
(

n
n+1

) =
1(

2(n+1)−n
n+1

) =
n + 1

2n + 2− n
=

n + 1

n + 2
.

But that’s the next point in the sequence. Therefore f(y) does indeed make the claimed move.

For 5.1.3:

f(y) = y

1

2− y
= y

y(2− y) = 1

y2 − 2y + 1 = 0

y = 1.



Therefore the point where y is not moved is y = 1. This is the spot where AD‖BC. The significance
is that it shows the place where the “point of infinity” is projected.

2. Exercises 5.3.1 and 5.3.2.

Solution 2.
For 5.3.1: We have

0a + 0b + c = 0

a + b + c = 0.

Therefore c = 0. We can fix a = 1, then b = −1. The plane looks like x− y = 0. This plane does not
go through (1, 0, 0) or (0, 1, 0) because 1− 0 6= 0 and 0− 1 6= 0.

For 5.3.2: By symmetry, the points (0, 0, 1), (0, 1, 0), and (1, 0, 0) behave similarly. So by considering
the case above and the case in class (the plane through the origin containing (1, 0, 0) and (0, 1, 0) does
not go through (0, 0, 1) or (1, 1, 1)), we have considered all possible ways where three points could have
a line in common. Therefore the points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) represent 4 “points” such that
no 3 of them are in a “line”.

Now the exercise itself talks about four “lines” no three of which have a “point” in common which is not
exactly the same thing as above. However, by thinking of the points as representing the coefficients of
the planes through the origin (for example (1, 1, 1) represents the plane x+ y + z = 0) and by thinking
of the intersection of two planes by solving for (x, y, z), the work above is identical but switching the
roles of (a, b, c) with those of (x, y, z). Therefore the same example that works for “4 ‘points’ no three
of which are in a ‘line’ ”, works for “4 ’lines’ no three of which have a ‘point’ in common”.

3. Exercises 5.3.3 and 5.3.4.

Solution 3.
For 5.3.3: The “line” through AB is a plane containing O,A,B. A “line” through BC is a plane
containing O,B,C. The intersection of those two planes is a line and it contains O and B, therefore
it is the line OB. Therefore E = B.

For 5.3.4: Suppose that AB,BC,CD have a common “point”. Since the common “point” of AB and
BC is B, and the common “point” between BC and CD is C, then B = C. But B and C are supposed
to be different “points”. So we have a contradiction.

The other cases are (AB,BC,AD), (AB,CD,AD), (BC,CD,AD). In the first one we have B = A,
in the second A = D, and in the third C = D. In all cases two points are forced to be equal.

4. Exercise 5.4.1.

Solution 4. We have

a + 2b + 3c = 0

a + b + c = 0.

Then b + 2c = 0. We can let c = 1, so b = −2 and a = −b − c = 2 − 1 = 1. Therefore the plane
x− 2y + z = 0 contains (1, 2, 3) and (1, 1, 1).

5. Exercises 5.4.2 and 5.4.3.

Solution 5.
For 5.4.2: The line of intersection is the line that goes from the origin to (1,−2, 1).

For 5.4.3: The reason we could use the answer from 5.4.1 is that in homogeneous equations, we just
change (a, b, c)↔ (x, y, z).

6. Exercises 5.5.1 and 5.5.2.



Solution 6.
For 5.5.1:

f1(f2(x)) = f1(a2x + b2) = a1(a2x + b2) + b1 = a1a2x + (a1b2 + b1) = Ax + B,

where A = a1a2 and B = a1b2 + b1. Since a1 6= 0 and a2 6= 0, then A = a1a2 6= 0.

For 5.5.2: Sending x→ x + ` is a function of the form f(x) = ax + b where a = 1 and b = `. Sending
x → kx for k 6= 0 is a function of the form f(x) = ax + b where a = k 6= 0 and b = 0. Therefore it
has the shape of the functions f1, f2 above. If we compose them, we get another function of the form
Ax + B (with A 6= 0), which is also of the same form f1, f2, so we can keep composing them and end
with something of the form f(x) = ax + b with a 6= 0.

7. Exercise 5.5.3.

Solution 7. Consider parallel lines L1, L2. Label numbers in each line in such a way that they are
equally spaced and the zeroes are aligned. Let the point 0 in L1 be called A and 0 in L2 be called B
. If the line PA is perpendicular to L1, then we get f(x) = kx for a nonzero k as shown in Figure
5.14. If PA is not perpendicular, then let A′ be the intersection of PA with L2. Let BA′ = b. Then
f(0) = b. Now consider the point X in L1 that is x units away from A, and say it maps to X ′ in L2

which is f(x) units away from B. By Thales theorem we have that AX/A′X ′ = PA/PA′ = k, for a
fixed number k 6= 0. But then

A′X ′ = AX ×
(
PA′

PA

)
= x

(
1

k

)
= ax,

for a = 1/k 6= 0. Therefore
f(x) = BX ′ = A′X ′ + A′B = ax + b,

with a 6= 0.

8. Exercises 5.6.1 and 5.6.2.

Solution 8.
For 5.6.1:

y =
ax + b

cx + d

(cx + d)y = ax + b

(cy − a)x = b− dy

x =
b− dy

cy − a
.

The last step requires cy− a 6= 0. Let’s show that ad− bc 6= 0 implies cy− a 6= 0. This is equivalent to
showing that cy − a = 0 implies ad − bc = 0. Suppose cy − a = 0. Then we have b − dy = 0 to make
(cy − a)x = b − dy true. Therefore a = cy and b = dy. So ad = cdy and bc = cdy, so ad − bc = 0.
Therefore when we divided by cy − a we were assuming that ad− bc 6= 0.

For 5.6.2:

f1(f2(x)) = f1

(
a2x + b2
c2x + d2

)

=
a1

(
a2x+b2
c2x+d2

)
+ b1

c1

(
a2x+b2
c2x+d2

)
+ d1

=

(
a1a2x+a1b2+b1c2x+b1d2

cx+d2

)
(

a2c1x+b2c1+c2d1x+d1d2

c2x+d2

)
=

(a1a2 + b1c2)x + (a1b2 + b1d2)

(a2c1 + c2d1)x + (b2c1 + d1d2)
=

Ax + B

Cx + D
.


