# Geometry <br> Homework 5 Solutions 

Enrique Treviño

October 21, 2016

1. Exercises 5.1.1, 5.1.2, and 5.1.3.

## Solution 1.

For 5.1.1: The equation of the line from $(-1,1)$ to $(n, 0)$ is

$$
y=\frac{1}{-1-n}(x-n)
$$

It crosses the $y$-axis when $x=0$. Therefore

$$
y=-\frac{1}{n+1}(-n)=\frac{n}{n+1}
$$

Alternative Solution: Alternatively, you could use Thales theorem. Label the points as in the following figure:


Then, what we want to show is that $O D=\frac{n}{n+1}$. Since $O D \| A C$, then by Thales Theorem

$$
\frac{O D}{A C}=\frac{O B}{B C}
$$

Since $A C=1, O B=n$, and $B C=O B+O C=n+1$, then $O D=\frac{n}{n+1}$.
For 5.1.2: The $n$-th point has the form $\frac{n}{n+1}$ (where we start with 0). Now

$$
f(y)=f\left(\frac{n}{n+1}\right)=\frac{1}{2-\left(\frac{n}{n+1}\right)}=\frac{1}{\left(\frac{2(n+1)-n}{n+1}\right)}=\frac{n+1}{2 n+2-n}=\frac{n+1}{n+2} .
$$

But that's the next point in the sequence. Therefore $f(y)$ does indeed make the claimed move. For 5.1.3:

$$
\begin{aligned}
f(y) & =y \\
\frac{1}{2-y} & =y \\
y(2-y) & =1 \\
y^{2}-2 y+1 & =0 \\
y & =1 .
\end{aligned}
$$

Therefore the point where $y$ is not moved is $y=1$. This is the spot where $A D \| B C$. The significance is that it shows the place where the "point of infinity" is projected.
2. Exercises 5.3.1 and 5.3.2.

## Solution 2.

For 5.3.1: We have

$$
\begin{aligned}
0 a+0 b+c & =0 \\
a+b+c & =0 .
\end{aligned}
$$

Therefore $c=0$. We can fix $a=1$, then $b=-1$. The plane looks like $x-y=0$. This plane does not go through $(1,0,0)$ or $(0,1,0)$ because $1-0 \neq 0$ and $0-1 \neq 0$.
For 5.3.2: By symmetry, the points $(0,0,1),(0,1,0)$, and $(1,0,0)$ behave similarly. So by considering the case above and the case in class (the plane through the origin containing ( $1,0,0$ ) and ( $0,1,0$ ) does not go through $(0,0,1)$ or $(1,1,1))$, we have considered all possible ways where three points could have a line in common. Therefore the points $(1,0,0),(0,1,0),(0,0,1),(1,1,1)$ represent 4 "points" such that no 3 of them are in a "line".
Now the exercise itself talks about four "lines" no three of which have a "point" in common which is not exactly the same thing as above. However, by thinking of the points as representing the coefficients of the planes through the origin (for example $(1,1,1)$ represents the plane $x+y+z=0)$ and by thinking of the intersection of two planes by solving for $(x, y, z)$, the work above is identical but switching the roles of $(a, b, c)$ with those of $(x, y, z)$. Therefore the same example that works for " 4 'points' no three of which are in a 'line' ", works for "4 'lines' no three of which have a 'point' in common".
3. Exercises 5.3.3 and 5.3.4.

## Solution 3.

For 5.3.3: The "line" through $A B$ is a plane containing $O, A, B$. A "line" through $B C$ is a plane containing $O, B, C$. The intersection of those two planes is a line and it contains $O$ and $B$, therefore it is the line $O B$. Therefore $E=B$.

For 5.3.4: Suppose that $A B, B C, C D$ have a common "point". Since the common "point" of $A B$ and $B C$ is $B$, and the common "point" between $B C$ and $C D$ is $C$, then $B=C$. But $B$ and $C$ are supposed to be different "points". So we have a contradiction.
The other cases are $(A B, B C, A D),(A B, C D, A D),(B C, C D, A D)$. In the first one we have $B=A$, in the second $A=D$, and in the third $C=D$. In all cases two points are forced to be equal.
4. Exercise 5.4.1.

Solution 4. We have

$$
\begin{aligned}
a+2 b+3 c & =0 \\
a+b+c & =0 .
\end{aligned}
$$

Then $b+2 c=0$. We can let $c=1$, so $b=-2$ and $a=-b-c=2-1=1$. Therefore the plane $x-2 y+z=0$ contains $(1,2,3)$ and $(1,1,1)$.
5. Exercises 5.4.2 and 5.4.3.

## Solution 5.

For 5.4.2: The line of intersection is the line that goes from the origin to $(1,-2,1)$.
For 5.4.3: The reason we could use the answer from 5.4.1 is that in homogeneous equations, we just change $(a, b, c) \leftrightarrow(x, y, z)$.
6. Exercises 5.5.1 and 5.5.2.

## Solution 6.

For 5.5.1:

$$
f_{1}\left(f_{2}(x)\right)=f_{1}\left(a_{2} x+b_{2}\right)=a_{1}\left(a_{2} x+b_{2}\right)+b_{1}=a_{1} a_{2} x+\left(a_{1} b_{2}+b_{1}\right)=A x+B
$$

where $A=a_{1} a_{2}$ and $B=a_{1} b_{2}+b_{1}$. Since $a_{1} \neq 0$ and $a_{2} \neq 0$, then $A=a_{1} a_{2} \neq 0$.
For 5.5.2: Sending $x \rightarrow x+\ell$ is a function of the form $f(x)=a x+b$ where $a=1$ and $b=\ell$. Sending $x \rightarrow k x$ for $k \neq 0$ is a function of the form $f(x)=a x+b$ where $a=k \neq 0$ and $b=0$. Therefore it has the shape of the functions $f_{1}, f_{2}$ above. If we compose them, we get another function of the form $A x+B$ (with $A \neq 0$ ), which is also of the same form $f_{1}, f_{2}$, so we can keep composing them and end with something of the form $f(x)=a x+b$ with $a \neq 0$.
7. Exercise 5.5.3.

Solution 7. Consider parallel lines $\mathfrak{L}_{1}, \mathfrak{L}_{2}$. Label numbers in each line in such a way that they are equally spaced and the zeroes are aligned. Let the point 0 in $\mathfrak{L}_{1}$ be called $A$ and 0 in $\mathfrak{L}_{2}$ be called $B$ . If the line $P A$ is perpendicular to $\mathfrak{L}_{1}$, then we get $f(x)=k x$ for a nonzero $k$ as shown in Figure 5.14. If $P A$ is not perpendicular, then let $A^{\prime}$ be the intersection of $P A$ with $\mathfrak{L}_{2}$. Let $B A^{\prime}=b$. Then $f(0)=b$. Now consider the point $X$ in $\mathfrak{L}_{1}$ that is $x$ units away from $A$, and say it maps to $X^{\prime}$ in $\mathfrak{L}_{2}$ which is $f(x)$ units away from $B$. By Thales theorem we have that $A X / A^{\prime} X^{\prime}=P A / P A^{\prime}=k$, for a fixed number $k \neq 0$. But then

$$
A^{\prime} X^{\prime}=A X \times\left(\frac{P A^{\prime}}{P A}\right)=x\left(\frac{1}{k}\right)=a x
$$

for $a=1 / k \neq 0$. Therefore

$$
f(x)=B X^{\prime}=A^{\prime} X^{\prime}+A^{\prime} B=a x+b
$$

with $a \neq 0$.
8. Exercises 5.6.1 and 5.6.2.

## Solution 8.

## For 5.6.1:

$$
\begin{aligned}
y & =\frac{a x+b}{c x+d} \\
(c x+d) y & =a x+b \\
(c y-a) x & =b-d y \\
x & =\frac{b-d y}{c y-a} .
\end{aligned}
$$

The last step requires $c y-a \neq 0$. Let's show that $a d-b c \neq 0$ implies $c y-a \neq 0$. This is equivalent to showing that $c y-a=0$ implies $a d-b c=0$. Suppose $c y-a=0$. Then we have $b-d y=0$ to make $(c y-a) x=b-d y$ true. Therefore $a=c y$ and $b=d y$. So $a d=c d y$ and $b c=c d y$, so $a d-b c=0$. Therefore when we divided by $c y-a$ we were assuming that $a d-b c \neq 0$.
For 5.6.2:

$$
\begin{aligned}
f_{1}\left(f_{2}(x)\right) & =f_{1}\left(\frac{a_{2} x+b_{2}}{c_{2} x+d_{2}}\right) \\
& =\frac{a_{1}\left(\frac{a_{2} x+b_{2}}{c_{2} x+d_{2}}\right)+b_{1}}{c_{1}\left(\frac{a_{2} x+b_{2}}{c_{2} x+d_{2}}\right)+d_{1}} \\
& =\frac{\left(\frac{a_{1} a_{2} x+a_{1} b_{2}+b_{1} c_{2} x+b_{1} d_{2}}{c_{x}+d_{2}}\right)}{\left(\frac{a_{2} c_{1} x+b_{2} c_{1}+c_{2} d_{1} x+d_{1} d_{2}}{c_{2} x+d_{2}}\right)} \\
& =\frac{\left(a_{1} a_{2}+b_{1} c_{2}\right) x+\left(a_{1} b_{2}+b_{1} d_{2}\right)}{\left(a_{2} c_{1}+c_{2} d_{1}\right) x+\left(b_{2} c_{1}+d_{1} d_{2}\right)}=\frac{A x+B}{C x+D} .
\end{aligned}
$$

