Geometry Homework 6 Solutions

Enrique Treviño

October 25, 2016

1. Exercises 5.7.1 and 5.7.2.

Solution 1.

For 5.7.1: Let $[p, q ; r, s]=K$, where p, q, r, K are fixed. Let's show there's a unique s that satisfies this.

$$
\begin{aligned}
K & =[p, q ; r, s] \\
K & =\frac{(r-p)(s-q)}{(r-q)(s-p)} \\
(s-p)(r-q) K & =(r-p)(s-q) \\
(s r-s q) K+(p q-p r) K & =r s-p s+p q-r q \\
s((r-q) K+(p-r)) & =q(p-r)+p(r-q) K \\
s & =\frac{q(p-r)+p(r-q) K}{(r-q) K+(p-r)} .
\end{aligned}
$$

Therefore s has only one option. We work with the understanding that if $(r-q) K+(r-p)=0$, then $s=\infty$ and if $(r-q) K+(r-p)=\infty$, then $s=0$.
For 5.7.2: $p=0, q=2, r=3, K=4 / 3$. Then

$$
s=\frac{q(p-r)+p(r-q) K}{(r-q) K+(p-r)}=\frac{2(0-3)+0(3-2)(4 / 3)}{(3-2)(4 / 3)+(0-3)}=\frac{-6}{4 / 3-3}=\frac{18}{5}=3.6 .
$$

In Figure 5.18, the first line has $p=0, q=2, r=3, s=3.5$. The second one has $p=0, q=2, r=$ $3, s \approx 3.6$, the third one looks like $p=0, q=2, r=3, s \approx 3.7$. Therefore the correct answer is the second one.
2. Exercises 5.7.3.

Solution 2. To have distances 1 , e, e^{2}, the points should be $p=0, q=1, r=1+e, s=1+e+e^{2}$. Then

$$
[p, q ; r, s]=\frac{(r-p)(s-q)}{(r-q)(s-p)}=\frac{(1+e)\left(e+e^{2}\right)}{e\left(1+e+e^{2}\right)}=\frac{e(1+e)^{2}}{e\left(1+e+e^{2}\right)}=\frac{1+2 e+e^{2}}{1+e+e^{2}}=1+\frac{e}{1+e+e^{2}}
$$

For this to mimic equally spaced, it would need to equal $4 / 3$. But that means

$$
\begin{aligned}
\frac{e}{1+e+e^{2}} & =\frac{1}{3} \\
3 e & =1+e+e^{2} \\
e^{2}-2 e+1 & =0 \\
(e-1)^{2} & =0 \\
e & =1
\end{aligned}
$$

The only way this works is if $e=1$, but in that case, you have the normal Cartesian plane and not a projective plane. So it doesn't quite work for the purposes of perspective.
3. Exercises 5.8.1 and 5.8.2.

Solution 3.

For 5.8.1:

$$
[p, q ; s, r]=\frac{(s-p)(r-q)}{(s-q)(r-p)}=\left(\frac{(r-p)(s-q)}{(r-q)(s-p)}\right)^{-1}=\frac{1}{y}
$$

For 5.8.2:

$$
[q, p ; r, s]=\frac{(r-q)(s-p)}{(r-p)(s-q)}=\left(\frac{(r-p)(s-q)}{(r-q)(s-p)}\right)^{-1}=\frac{1}{y}
$$

4. Exercise 5.8.3.

Solution 4.

$$
\begin{aligned}
{[p, q ; r, s]+[p, r ; q, s] } & =\frac{(r-p)(s-q)}{(r-q)(s-p)}+\frac{(q-p)(s-r)}{(q-r)(s-p)}=\frac{(r-p)(s-q)-(q-p)(s-r)}{(r-q)(s-p)} \\
& =\frac{r s-r q-p s+p q-q s+q r+p s-p r}{(r-q)(s-p)}=\frac{r s+p q-q s-p r}{(r-q)(s-p)} \\
& =\frac{r(s-p)-q(s-p)}{(r-q)(s-p)}=\frac{(r-q)(s-p)}{(r-q)(s-p)}=1
\end{aligned}
$$

5. Exercises 5.8.4, 5.8.5 and 5.8.6.

Solution 5.

For 5.8.4: We will apply each of the three functions to $y, 1 / y, 1-y$ in that order.
Applying y to any of the functions yields $y, 1 / y, 1-y$.
Applying $1 / y$ to any of the functions changes them to $1 / y, y, \frac{1}{1-y}$.
Applying $1-y$ to any of the functions yields $1-y, 1-\frac{1}{y}, 1-(1-y)=y$.
But now we have 5 functions: $y, 1 / y, 1-y, 1-\frac{1}{y}, \frac{1}{1-y}$. We apply each of the three functions to the "new guys" $\frac{1}{1-y}$ and $1-\frac{1}{y}$.
$y \rightarrow \frac{1}{1-y}, 1-\frac{1}{y}$.
$\frac{1}{y} \rightarrow 1-y, \frac{y}{y-1}$.
$1-y \rightarrow 1-\frac{1}{1-y}=\frac{1-y-1}{1-y}=\frac{-y}{1-y}=\frac{y}{y-1}, 1-\left(1-\frac{1}{y}\right)=\frac{1}{y}$.
There is only one newcomer: $\frac{y}{y-1}$. If we apply the three functions to this one we get $\frac{y}{y-1}, \frac{y-1}{y}=$ $1-\frac{1}{y}, 1-\frac{y}{y-1}=\frac{1}{y}$. So there is no new function that is revealed. So any further composition will remain in one of these six functions.
For 5.8.5: Suppose we have a permutation of $\{p, q, r, s\}$. There are 24 possibilities. For each of the possibilities, let's show that you can get to them by doing a series of switches involving only the first two, the middle two, or the last two numbers.
$\{p, q, r, s\}$: No change necessary.
$\{p, q, s, r\}$: Switch the last two.
$\{p, r, q, s\}$: Switch the middle two.
$\{p, r, s, q\}$: Switch the middle two, then switch the last two.
$\{p, s, q, r\}$: Switch the middle two, then switch the last two.
$\{p, s, r, q\}$: Switch the last two, then switch the middle two, then switch the last two.
$\{q, p, r, s\}$: Switch the first two.
$\{q, p, s, r\}$: Switch the first two, then switch the last two.
$\{q, r, p, s\}$: Switch the first two, then switch the middle two.
$\{q, r, s, p\}$: Switch the first two, then the middle two, then the last two.
$\{q, s, p, r\}$: Switch the middle two, then switch the first two, then switch the last two.
$\{q, s, r, p\}$: Switch the last two, then you are in the previous situation.
$\{r, q, p, s\}$: Switch the first two, then the middle two, then the first two again.
$\{r, q, s, p\}$: Switch the first two, then the middle two, then the first two again, then the last two.
$\{r, p, q, s\}$: Switch the first two, then the middle two, then the first two, then the middle two.
$\{r, p, s, q\}$: Switch the first two, then the middle two, then the first two, then the middle two, then the last two.
$\{r, s, p, q\}$: Switch the middle two and you get to the previous situation.
$\{r, s, q, p\}$: Switch the last two and you get to the previous situation.
$\{s, q, r, p\}$: Switch the first two, then the middle two, then the last two, then the middle two, then the first two.
$\{s, q, p, r\}$: Switch the first two, then the middle two, then the last two, then the middle two, then the first two, then the last two.
$\{s, r, q, p\}$: Switch the first two, then the middle two, then the last two, then the middle two, then the first two, then the middle two.
$\{s, r, p, q\}$: Switch the first two, then the middle two, then the last two, then the middle two, then the first two, then the middle two, then the last two.
$\{s, p, q, r\}$: Switch the first two, then switch the middle two, then switch the last two.
$\{s, p, r, q\}$: Switch the last two and you get to the previous situation.
For 5.8.6: Swapping the first two or the last two yields $y \rightarrow 1 / y$. Swapping the middle two yields $1-y$, and not doing a change means $y \rightarrow y$. Since every permutation comes from one of these transformations and the composition of these transformations has to be of the form $y, \frac{1}{y}, 1-y, \frac{1}{1-y}, \frac{y}{y-1}, 1-\frac{1}{y}$.
Remark 1. Exercise 5.8 .5 can be recast in the language of permutation groups. The exercise asks one to prove that every permutation of 4 elements $\{1,2,3,4\}$ can be written as a product of the transpositions (12), (23), (34). First note than every transposition is a product of transpositions of the form (12), (23), (34).

$$
(13)=(12)(23)(12), \quad(14)=(12)(23)(34)(23)(12), \quad(24)=(23)(34)(23)
$$

Since every permutation can be written as a product of transpositions and every transposition can be written as a product of transpositions of the form (12), (23), (34), then the statement follows.
6. We can define the cross-ratio in the plane as follows. Given four points A, B, C, D on a line, then we say that the cross-ratio $[A, B ; C, D]$ is

$$
[A, B ; C, D]=\left(\frac{A C}{B C}\right) /\left(\frac{A D}{B D}\right)
$$

In the following diagram, prove that $[A, B ; C, D]=\left[A^{\prime}, B^{\prime} ; C^{\prime}, D^{\prime}\right]$ (true whenever $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ concur):
Solution 6. Let $\measuredangle A P B=\alpha, \measuredangle B P C=\beta, \measuredangle C P D=\gamma, \measuredangle A B P=\delta, \measuredangle A^{\prime} B^{\prime} P=\delta^{\prime}, \measuredangle A C P=\epsilon$, $\measuredangle A^{\prime} C^{\prime} P=\epsilon^{\prime}, \measuredangle A D P=\theta \measuredangle A D^{\prime} P^{\prime}=\theta^{\prime}$. Then by Law of Sines on $\triangle A C P$ and on $\triangle A^{\prime} C^{\prime} P$ we have

$$
\frac{A C}{\sin (\alpha+\beta)}=\frac{A P}{\sin (\epsilon)} \quad \frac{A^{\prime} C^{\prime}}{\sin (\alpha+\beta)}=\frac{A^{\prime} P}{\sin \left(\epsilon^{\prime}\right)}
$$

Similarly using $\triangle B C P, \triangle B^{\prime} C^{\prime} P$ we have

$$
\frac{B C}{\sin (\beta)}=\frac{B P}{\sin (\epsilon)} \quad \frac{B^{\prime} C^{\prime}}{\sin (\beta)}=\frac{B^{\prime} P}{\sin \left(\epsilon^{\prime}\right)}
$$

Using $\triangle A D P, \triangle A^{\prime} D^{\prime} P$ we have

$$
\frac{A D}{\sin (\alpha+\beta+\gamma)}=\frac{A P}{\sin (\theta)} \quad \frac{A^{\prime} D^{\prime}}{\sin (\alpha+\beta+\gamma)}=\frac{A^{\prime} P}{\sin \left(\theta^{\prime}\right)}
$$

Using $\triangle B D P, \triangle B^{\prime} D^{\prime} P$ we have

$$
\frac{B D}{\sin (\beta+\gamma)}=\frac{B P}{\sin (\theta)} \quad \frac{B^{\prime} D^{\prime}}{\sin (\beta+\gamma)}=\frac{B^{\prime} P}{\sin \left(\theta^{\prime}\right)}
$$

Then combining all of this we get

$$
[A, B ; C, D]=\frac{\left(\frac{A C}{B C}\right)}{\left(\frac{A D}{B D}\right)}=\frac{\left(\frac{\left(\frac{A P \sin (\alpha+\beta)}{\sin (\epsilon)}\right)}{\left(\frac{B P \sin (\beta)}{\sin (\epsilon)}\right)}\right)}{\left(\frac{\left(\frac{A P \sin (\alpha+\beta+\gamma)}{\sin (\theta)}\right)}{\left(\frac{B P \sin (\beta+\gamma)}{\sin (\beta)}\right)}\right)}=\frac{\left(\frac{A P}{B P}\right)\left(\frac{\sin (\alpha+\beta)}{\sin (\beta)}\right)}{\left(\frac{A P}{B P}\right)\left(\frac{\sin (\alpha+\beta+\gamma)}{\sin (\theta)}\right)}=\frac{\left(\frac{\sin (\alpha+\beta)}{\sin (\beta)}\right)}{\left(\frac{\sin (\alpha+\beta+\gamma)}{\sin (\theta)}\right)}
$$

and

$$
\left[A^{\prime}, B^{\prime} ; C^{\prime}, D^{\prime}\right]=\frac{\left(\frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime}}\right)}{\left(\frac{A^{\prime} D^{\prime}}{B^{\prime} D^{\prime}}\right)}=\frac{\left(\frac{\left(\frac{A^{\prime} P \sin (\alpha+\beta)}{\sin \left(\epsilon^{\prime}\right)}\right)}{\left(\frac{B^{\prime} \sin (\beta)}{\sin \left(\epsilon^{\prime}\right)}\right)}\right)}{\left(\frac{\left(\frac{A^{\prime} P \sin (\alpha+\beta+\gamma)}{\sin \left(\theta^{\prime}\right)}\right)}{\left(\frac{B^{\prime} P \sin (\beta+\gamma)}{\sin \left(\theta^{\prime}\right)}\right)}\right)}=\frac{\left(\frac{A^{\prime} P}{B^{\prime} P}\right)\left(\frac{\sin (\alpha+\beta)}{\sin (\beta)}\right)}{\left(\frac{A^{\prime} P}{B^{\prime} P}\right)\left(\frac{\sin (\alpha+\beta+\gamma)}{\sin (\theta)}\right)}=\frac{\left(\frac{\sin (\alpha+\beta)}{\sin (\beta)}\right)}{\left(\frac{\sin (\alpha+\beta+\gamma)}{\sin (\theta)}\right)}
$$

Therefore $[A, B ; C, D]=\left[A^{\prime}, B^{\prime} ; C^{\prime}, D^{\prime}\right]$.
Remark 2. In class we proved that if four projective points project to another, then their cross-ratios are equal. If we think of the points in terms of vectors, then if $p=A, q=B, r=C, s=D$, we have $r-p=\overline{A C}, r-q=\overline{B C}, s-p=\overline{A D}, s-q=\overline{B D}$, so

$$
[p, q ; r, s]=\frac{(r-p)(s-q)}{(r-q)(s-p)}=\frac{A C \times B D}{B C \times A D}=[A, B ; C, D]
$$

Since A, B, C, D project onto $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, then their cross rations must be equal to each other.
7. Suppose we have A, B, C three points aligned. Let D be the point at infinity. Then show

$$
[A, B ; C, D]=\frac{A C}{B C}
$$

In other words, as D goes farther and farther away, the cross ratio approaches $A C / B C$.

Solution 7. Let D be a point far away and consider it as a variable. Then

$$
[A, B ; C, D]=\left(\frac{A C}{B C}\right)\left(\frac{B D}{A D}\right)
$$

AS $D \rightarrow \infty$, then $\frac{B D}{A D}=1$. Therefore

$$
[A, B ; C, D]=\frac{A C}{B C}
$$

8. Let $A B C$ be a triangle, let M be the midpoint of $A C$, and let N be a point on the line $B M$ such that $A N$ is parallel to $B C$. Let P be any point on the line $A C$, and let Q be the intersection of the line $B P$ with the line $A N$. Prove that

$$
\frac{A Q}{Q N}=\frac{1}{2}\left(\frac{A P}{P M}\right)
$$

Hint: Use cross ratios.

Solution 8.

$$
\frac{A Q}{Q N}=[A, N ; Q, \infty]
$$

and

$$
\frac{1}{2}\left(\frac{A P}{P M}\right)=\left(\frac{M C}{C A}\right)\left(\frac{A P}{P M}\right)=[A, M ; P, C]
$$

Consider the point of perspective to be B. Project the line $A P$ to the line $Q N$. The projection of M is N, the projection of A is A, the projection of C is ∞ (because $B C \| A N$), and the projection of P is Q. Therefore

$$
[A, M ; P, C]=[A, N ; Q, \infty]
$$

and hence the problem is solved.

