Geometry Homework 7 Solutions

Enrique Treviño

November 23, 2016

1. Exercises 6.1.1 and 6.1.4.

Solution 1.

For 6.1.1: Suppose that the "line" starts with a line of slope k (followed by a line of slope $k / 2$). Since the line has slope k at first, the equation of the line is $y=k x-1$ (since the y-intercept is -1). This line meets the x-axis at $(1 / k, 0)$ (since $k x-1=0$, has solution $x=1 / k)$. From that point to $(2,1 / 2)$, the slope should be $k / 2$, so we have

$$
\begin{aligned}
\frac{\frac{1}{2}}{2-\frac{1}{k}} & =\frac{k}{2} \\
1 & =k\left(2-\frac{1}{k}\right) \\
1 & =2 k-1 \\
1 & =k .
\end{aligned}
$$

Therefore, the "line" meets the x-axis at $x=1$.
For 6.1.4: A lot of points work. For example $(0,0),(2,1 / 2),(0,-1),(2,-1)$ works.
2. Exercises 6.1.2 and 6.1.3.

Solution 2.

For 6.1.2: Suppose we have two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$. If P_{1}, P_{2} are both above the x-axis $\left(y_{1}, y_{2} \geq 0\right)$ or both below the x-axis $\left(y_{1}, y_{2} \leq 0\right)$, then the "line" connecting them is a normal line and it's unique from normal Euclidean considerations. If $x_{1}=x_{2}$, then the "line" is vertical and once again it is normal. If $y_{1}=y_{2}$, then the "line" is horizontal and hence normal. Therefore, we may assume that one of the points is above the x-axis and the other below and that their x-coordinates don't match. Without loss of generality, we may assume that P_{2} is the one above the x-axis. Therefore, we know that $y_{2}>0, y_{1}<0$. Since lines with negative slope are also kept, we can assume that $x_{2}>x_{1}$ (otherwise, we've have a normal line connecting the points).
Let's find a Moulton "line" that connects P_{1} and P_{2}. Let $P=(x, 0)$ be the intersection with the x-axis and suppose the "line" starts with slope k and ends with slope $k / 2$. Then we have

$$
\begin{aligned}
& \frac{-y_{1}}{x-x_{1}}=k \\
& \frac{-y_{2}}{x-x_{2}}=\frac{k}{2}
\end{aligned}
$$

Therefore

$$
\frac{-y_{1}}{x-x_{1}}=k=2\left(\frac{k}{2}\right)=2\left(\frac{-y_{2}}{x-x_{2}}\right) .
$$

Hence

$$
\begin{aligned}
-y_{1} x+y_{1} x_{2} & =-2 y_{2} x+2 x_{1} y_{2} \\
x\left(2 y_{2}-y_{1}\right) & =2 x_{1} y_{2}-y_{1} x_{2} \\
x & =\frac{2 x_{1} y_{2}-y_{1} x_{2}}{2 y_{2}-y_{1}} .
\end{aligned}
$$

Since $y_{2}>0$ and $y_{1}<0$, then $2 y_{2}-y_{1}=y_{2}+y_{2}+\left(-y_{1}\right)>0+0+0=0$. Therefore, the value of x exists and it's unique (since it only depends on $x_{1}, y_{1}, x_{2}, y_{2}$). One last thing to check is that $k>0$. Note that

$$
x-x_{1}=\frac{2 x_{1} y_{2}-y_{1} x_{2}}{2 y_{2}-y_{1}}-x_{1}=\frac{2 x_{1} y_{2}-y_{1} x_{2}-2 x_{1} y_{2}+x_{1} y_{1}}{2 y_{2}-y_{1}}=\frac{y_{1}\left(x_{1}-x_{2}\right)}{2 y_{2}-y_{1}} .
$$

Since $x_{2}>x_{1}, 2 y_{2}-y_{1}>0$, and $y_{1}<0$, then $x-x_{1}>0$. But $k=-y_{1} /\left(x-x_{1}\right)$. Since $x-x_{1}>0$ and $y_{1}<0$, then $-y_{1} /\left(x-x_{1}\right)>0$. Therefore $k>0$.
For 6.1.3: Let ℓ_{1}, ℓ_{2} be Moulton lines. Suppose that they intersect at P and at Q. From 6.1.2, we know that there is a unique line containing P and Q. But ℓ_{1} and ℓ_{2} contain P, Q. Therefore $\ell_{1}=\ell_{2}$. This shows that two lines cannot meet in two (or more) points.
We still need to show that two lines have to intersect. Let ℓ_{1} and ℓ_{2} be Moulton lines that are not parallel to each other. If both lines don't have positive slope, then they are normal lines and it follows that they intersect each other. We may assume that one of them has positive slope. Let ℓ_{1} have slope $k>0$ below the x-axis and $k / 2$ above the x-axis. Let L be the intersection of ℓ_{1} with the x-axis. Let p_{1} to be the Euclidean line with slope $k / 2$ that goes through L and p_{2} the Euclidean line with slope k that goes through L.

We have two cases: either ℓ_{2} is a normal (Euclidean) line or it's not.
Case I: Suppose ℓ_{2} is a Euclidean line. Since ℓ_{1} is not parallel to ℓ_{2}, then p_{1} and p_{2} intersect ℓ_{2} at points A and B, respectively. Suppose ℓ_{1} and ℓ_{2} don't intersect. That means that P is below the x-axis and Q is above the x-axis. But then the slope of the line going through $P Q$ is positive and for ℓ_{2} to be a Euclidean line, the slope must be negative. Contradiction! Therefore, the lines intersect.
Case II: Suppose ℓ_{2} is not a normal Euclidean line. Let M be the intersection of ℓ_{2} with the x-axis. If $L=M$, then we're done, so we may assume $L \neq M$. Let $m>0$ be the slope of ℓ_{2} below the x-axis and $m / 2$ above the x-axis. Because of symmetry, we may assume without loss of generality that M is to the right of L. We have two subcases, $k>m$ and $k<m$ ($k=m$ is the parallel case).

The angle at L between the x-axis and the ray with slope $k / 2$ is $\theta=\arctan (k / 2)$. The angle at M between the x-axis and the ray with slope $m / 2$ is $\phi=\arctan (m / 2)$. Note that since $k, m>0$, we have $0<\theta, \phi<90^{\circ}$. If $k<m$, then $k / 2<m / 2$ and hence $\phi>\theta$, i.e., $\theta-\phi<0$. But then $\theta+\left(180^{\circ}-\phi\right)<180^{\circ}$ and by the Fifth postulate, that means that the lines intersect in that direction, i.e., they intersect above the x-axis. In that case, the Moulton lines intersect. If $k>m$, the relevant angles are below the x-axis. Let α be the angle at L between the ray below the x-axis of ℓ_{1} and the x-axis. Let β be the angle at M between the ray below the x-axis of ℓ_{2} and the x-axis. We have that $\alpha=180^{\circ}-\arctan (k)$ and $\beta=180^{\circ}-\arctan (m)$. The relevant angles are α
and $180^{\circ}-\beta$. Since $k>m$, then $\alpha<\beta$. Then $\alpha+180^{\circ}-\beta<180^{\circ}$, so by the Fifth postulate, the lines intersect below the x-axis. Therefore ℓ_{1} and ℓ_{2} intersect.
3. Exercises 6.1.5 and 6.3.1.

Solution 3.

For 6.1.5: The figure above is similar to Figure 6.5 of the textbook, with the difference that I labelled some points and I didn't draw the Moulton line from A to H. Line \mathscr{L} in Figure 6.5 of the textbook would be the highest horizontal line in this figure, i.e., the line connecting F and G. The perspective triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$ in the figure have two pairs of corresponding sides that intersect at \mathscr{L}, namely F, G. These intersections are valid in the Euclidean plane and in the Moulton plane. Let H be the intersection of $A^{\prime} C^{\prime}$ with \mathscr{L}. By Desargues on the Euclidean plane, $A C$ goes through H. If Desargues were to hold in the Moulton plane, then the line connecting A and C would go through H, or equivalently, the line connecting A to H must go through C. Let X be the point where the Moulton line from A to H crosses the x-axis. Then the slope m of $A X$ is double the slope of $X H$. If we assume the line goes through C, then the slope of $A X$ is the same as the slope of $A C$ (because A and C are below the x-axis). But the Euclidean line from A to H goes through C and hence has slope m as well. This would imply that the slope from X to H is also m. But the Moulton line forces that slope to be $m / 2$. Contradiction.

For 6.3.1: The figure above is similar to Figure 6.16, except I drew it in the Euclidean plane. First note that $A B\left\|A^{\prime} B^{\prime}, A C\right\| A^{\prime} C^{\prime}$, and $B C \| B^{\prime} C^{\prime}$. Since all of the points are below the x-axis, then the parallel lines hold in the Moulton plane as well. This means that the intersection of the corresponding sides of the triangle meet at a line (in this case, the line at infinity). Therefore, the conditions for the converse of Desargues are satisfied. If we consider them in the Euclidean plane, then $A A^{\prime}, B B^{\prime}, C C^{\prime}$ intersect at a point P. Now note how $B B^{\prime}$ has negative slope and $C C^{\prime}$ is vertical. Therefore, those lines are the same in the Moulton plane as in the Eucldiean plane. So if $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are in perspective in the Moulton plane, the point of perspective must be P. Note that P is above the x-axis,
therefore the Moulton line connecting A to P would break in two. For the same reasons as 6.1.5, this line cannot go through A^{\prime}. Therefore, the converse of Desargues is not true in the Moulton plane.
4. Exercises 6.2.1 and 6.2.2.

Solution 4.

For 6.2.1: "If two triangles are in perspective from a point P (possibly at ∞), and if two pairs of corresponding sides are parallel, then the third pair of corresponding sides are also parallel."
For 6.2.2: Figure 6.7 would look like

The little Desargues theorem implies that the diagonals in the figure are parallel to each other.
Figure 6.8 would look like:

Figure 6.9 would look like:
5. Exercises 6.2.3 and 6.2.4.

Solution 5.

For 6.2.3: In the drawing, the way the construction works is that we have A, B, D, F. Then we draw $A F$. Because $A D \| B F$ and $A B \| D F$, then \mathscr{L} is the line at infinity. Therefore $A F$ intersects \mathscr{L} at ∞. We now draw the line from ∞ to D. This means we draw a line parallel to $A F$ through D. This line intersects $B F$ at H. Then we draw a line from $A B \cap D F=\infty$ to H. Therefore, we draw a line parallel to $A B$ through H. The intersection with $A D$ gives us E. Then we want to draw the line from $A D \cap B F=\infty$ to $I=E H \cap A F$. Therefore, we want to draw a line parallel to $A D$ through I. This line intersects $D F$ at G and $A B$ at C. The coincidence is that $B G \| A F$.
For 6.2.4: By little Desargues using the "new" Figure 6.8 with the labels from here, we have that since $D H\|F I, A D\| B F$ and $\triangle A D H$ and $\triangle B F I$ are in perspective (because $A B\|D F\| H I$), then $A H \| B I$.

Using the "new" Figure 6.9 with the labels from this problem, we have $\triangle A H F$ and $\triangle B I G$ are in perspective because $A B\|F G\| H I$. Using little Desargues, since $A H \| B I$ and $H F \| I G$, then $A F \| B G$. But that's what we wanted to prove.
6. Exercise 6.2.5.

Solution 6. Consider the figure:

Place the x-axis above E and below G. Since $B F$ and $D L$ have negative slope, their intersection is G in the Euclidean plane and in the Moulton plane. However, since E is below the x-axis and G is above the x-axis, the Moulton line connecting them must split in two. Therefore, it can't go through H (since the Euclidean line $E H$ goes through G).
7. Exercises 6.3.2 and 6.3.3.

Solution 7.

For 6.3.2: "Suppose triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ satisfy that $A B \cap A^{\prime} B^{\prime}, B C \cap B^{\prime} C^{\prime}$ and $A^{\prime} C^{\prime} \cap A C$ are in a line \mathscr{L} that goes through a point P. Suppose also that $A A^{\prime} \cap C C^{\prime}=P$. Then the triangles are in perspective with respect to P."

Proof: One easy proof is to simply invoke the converse of Desargues. Since the three corresponding pairs intersect at points at a line \mathscr{L}, then the triangles are in perspective. Since $A A^{\prime} \cap C C^{\prime}=P$, then they could only be in perspective with respect to P.
The exercise asks for a proof using little Desargues, so let's come up with one. Let $D=B C \cap B^{\prime} C^{\prime}$. Let $B^{\prime \prime}$ be the intersection of $B P$ with $D C^{\prime}$. By construction, $\triangle A B C$ and $\triangle A^{\prime} B^{\prime \prime} C^{\prime}$ are in perspective. We also know that $B^{\prime \prime} C^{\prime} \cap B C=D$ is in \mathscr{L} and that $A C \cap A^{\prime} C^{\prime}$ is also in \mathscr{L}. Therefore, by the Little Desargues Theorem, $A B \cap A^{\prime} B^{\prime \prime}$ is also in \mathscr{L}. Let $E=\mathscr{L} \cap A B$. Then $A^{\prime} B^{\prime}$ goes through E by our initial assumption (that the corresponding sides intersect in \mathscr{L}). But $A^{\prime} B^{\prime \prime}$ also goes through E. Therefore B^{\prime} and $B^{\prime \prime}$ are both in the line $E A^{\prime}$ and in the line $D C^{\prime}$. Therefore $B^{\prime}=B^{\prime \prime}=E A^{\prime} \cap D C^{\prime}$. That means $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are in perspective with respect to point P.

For 6.3.3: Suppose $A, C, A^{\prime}, C^{\prime}$ is in a line ℓ_{1} and $B, D, B^{\prime}, D^{\prime}$ is in a line ℓ_{2}. Furthermore, suppose that $\ell_{1}\left\|\ell_{2}, A B\right\| A^{\prime} B^{\prime}, A D\left\|A^{\prime} D^{\prime}, B C\right\| B^{\prime} C^{\prime}$. We want to show that $C D \| C^{\prime} D^{\prime}$.

Let E be the intersection of $A D$ and $B C$. Let E^{\prime} be the intersection of $A^{\prime} D^{\prime}$ and $B^{\prime} C^{\prime} . A E\left\|A^{\prime} E^{\prime}, A B\right\| A^{\prime} B^{\prime}, B E \| B^{\prime} E^{\prime}$, so they all meet at the line at infinity. Since $A A^{\prime} \| B B^{\prime}$, then those lines also meet at the line at infinity. Then, by the converse of little Desargues, the triangles $\triangle A B E$ and $\triangle A^{\prime} B^{\prime} E^{\prime}$ are in perspective with respect to the point at infinity. Therefore $E E^{\prime}\left\|A A^{\prime}\right\| B B^{\prime}$.

Now, since $C C^{\prime}\left\|A A^{\prime}\right\| E E^{\prime}\left\|B B^{\prime}\right\| D D^{\prime}$, then $\triangle C E D$ and $\triangle C^{\prime} E^{\prime} D^{\prime}$ are in perspective. Since $E C \| E^{\prime} C^{\prime}$ and $E D \| E^{\prime} D^{\prime}$, then the remaining corresponding sides must be parallel too. Therefore $C D \| C^{\prime} D^{\prime}$.
8. Exercise 6.3.4.

Solution 8

In the diagram, the quadrilaterals are in perspective with respect to P. We also have $A B \| A^{\prime} B^{\prime}$, $B C\left\|B^{\prime} C^{\prime}, A D\right\| A^{\prime} D^{\prime}$. The question is whether this implies that $C D \| C^{\prime} D^{\prime}$. Note that $C D$ and $C^{\prime} D^{\prime}$ have negative slope, so they are normal Euclidean lines.
Let F be the intersection of $B^{\prime} C^{\prime}$ with the Euclidean line $P A$. From the Scissors Theorem, we know that $F D^{\prime} \| C D$ (because $A B\left\|A^{\prime} B^{\prime}, B C\right\| B^{\prime} C^{\prime}\left\|B^{\prime} F, A D\right\| A^{\prime} D^{\prime}$, and $A B C D$ and $A^{\prime} B^{\prime} F D^{\prime}$ are quadrilaterals in perspective). Since $D^{\prime} F \| C D$ and $F \neq C^{\prime}$, then $D^{\prime} C^{\prime}$ is not parallel to $C D$ (otherwise, $D^{\prime}, F, C^{\prime}$ would be collinear, but that means that $B^{\prime}=D^{\prime}$ which is clearly not true in that diagram).

