Math 340: Geometry

Homework 8

1. Exercises 6.6.1, 6.6.2, and 6.6.3.
2. Exercise 6.7.1.
3. Exercise 6.7.2.
4. Exercises 3.7.1 and 3.7.2.
5. Exercises 3.7.3 and 3.7.4.
6. Exercises 8.1.3 and 8.1.4.
7. In the statement of Pascal's Theorem (problem 6 in Midterm 2) all six points are distinct. However, when two points are the same on a circle, we can still think of them as distinct but "infinitesimally" close. In this way the line they determine is the tangent to the conic at their common position.
(a) State the analogue of Pascal's Theorem in the case when just two of the points of the hexagon, say A and F, coincide on the circle. Draw a picture.
(b) State the analogue of Pascal's Theorem when $E=F$ and $C=D$. Draw a picture.
8. Lines $A P, B P$ and $C P$ meet the sides of triangle $\triangle A B C$ at points A_{1}, B_{1} and C_{1}, respectively. Suppose that lines $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$ intersect $B C, C A, A B$ at points A_{2}, B_{2}, C_{2}, respectively. Prove that the points A_{2}, B_{2} and C_{2} lie on a line.
9. Two circles intersect at A and C. The tangents at A to these circles intersect at B and D. Prove $\overline{A B} \cdot \overline{C D}=\overline{A C} \cdot \overline{A D}$.
