Geometry Homework 8 Solutions

Enrique Treviño

November 25, 2016

1. Exercises 6.6.1, 6.6.2, and 6.6.3.

Solution 1.

For 6.6.1:

$$
\begin{aligned}
\left|\left(\begin{array}{cc}
a+b i & c+i d \\
-c+i d & a-i b
\end{array}\right)\right| & =(a+i b)(a-i b)-(c+i d)(-c+i d) \\
& =a^{2}-\left(i^{2}\right) b^{2}-\left(i^{2} d^{2}-c^{2}\right) \\
& =a^{2}-\left(-b^{2}\right)+c^{2}-\left(-d^{2}\right) \\
& =a^{2}+b^{2}+c^{2}+d^{2} .
\end{aligned}
$$

Suppose \mathbf{q} is not zero. Then at least one of a, b, c, d is not zero. Therefore $a^{2}+b^{2}+c^{2}+d^{2} \neq 0$. Any matrix with nonzero determinant has an inverse, therefore \mathbf{q}^{-1} exists.
For 6.6.2: Let $\mathbf{s}=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$ and $\mathbf{t}=\left(\begin{array}{cc}i & 2 \\ -2 & -i\end{array}\right)$. Note that \mathbf{s} is of the same form as \mathbf{q} where $a=1, b=0, c=2, d=0$, and \mathbf{t} would have $a=0, b=1, c=2, d=0$. Then

$$
\mathbf{s t}=\left(\begin{array}{cc}
-4+i & 2-2 i \\
-2-2 i & -4-i
\end{array}\right)
$$

and

$$
\mathbf{t s}=\left(\begin{array}{cc}
-4+i & 2+2 i \\
-2+2 i & -4-i
\end{array}\right)
$$

They are different because $2-2 i \neq 2+2 i$.
For 6.6.3:

$$
\begin{gathered}
\mathbf{i}^{2}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)^{2}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=\left(\begin{array}{cc}
i^{2} & 0 \\
0 & (-i)^{2}
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-\mathbf{1} . \\
\mathbf{j}^{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)^{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-\mathbf{1} . \\
\mathbf{k}^{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)^{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
i^{2} & 0 \\
0 & i^{2}
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-\mathbf{1} . \\
\mathbf{i j} \mathbf{k}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)=\mathbf{k}^{2}=-\mathbf{1} .
\end{gathered}
$$

2. Exercise 6.7.1.

Solution 2. We are assuming that $a(b+c)=a b+a c$. We also know that the operation is commutative, therefore $a(b+c)=(b+c) a, a b=b a$, and $a c=c a$. Therefore

$$
(b+c) a=a(b+c)=a b+a c=b a+c a .
$$

3. Exercise 6.7.2.

Solution 3. We'll use that $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1$, that $\mathbf{i j}=\mathbf{k}, \mathbf{j} \mathbf{i}=-\mathbf{k}, \mathbf{j} \mathbf{k}=\mathbf{i}, \mathbf{k j}=$ $-\mathbf{i}, \mathbf{k i}=\mathbf{j}$, and $\mathbf{i k}=-\mathbf{j}$. Suppose we have the quaternions $\mathbf{a}, \mathbf{b}, \mathbf{c}$. Then, there exist real numbers $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}, c_{1}, c_{2}, c_{3}, c_{4}$ such that

$$
\begin{aligned}
& \mathbf{a}=a_{1} \mathbf{1}+a_{2} \mathbf{i}+a_{3} \mathbf{j}+a_{4} \mathbf{k} \\
& \mathbf{b}=b_{1} \mathbf{1}+b_{2} \mathbf{i}+b_{3} \mathbf{j}+b_{4} \mathbf{k} \\
& \mathbf{c}=c_{1} \mathbf{1}+c_{2} \mathbf{i}+c_{3} \mathbf{j}+c_{4} \mathbf{k} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbf{a b}= & \left(a_{1} \mathbf{1}+a_{2} \mathbf{i}+a_{3} \mathbf{j}+a_{4} \mathbf{k}\right)\left(b_{1} \mathbf{1}+b_{2} \mathbf{i}+b_{3} \mathbf{j}+b_{4} \mathbf{k}\right) \\
= & a_{1} b_{1} \\
& +a_{1} b_{2} \mathbf{i}+a_{1} b_{3} \mathbf{j}+a_{1} b_{4} \mathbf{k}+ \\
& +a_{2} b_{1} \mathbf{i}+a_{2} b_{2} \mathbf{i}^{2}+a_{2} b_{3} \mathbf{i} \mathbf{j}+a_{2} b_{4} \mathbf{i} \mathbf{k} \\
& \quad+a_{3} b_{1} \mathbf{j}+a_{3} b_{2} \mathbf{j} \mathbf{i}+a_{3} b_{3} \mathbf{j}^{2}+a_{3} b_{4} \mathbf{j} \mathbf{k} \\
& \quad+a_{4} b_{1} \mathbf{k}+a_{4} b_{2} \mathbf{k} \mathbf{i}+a_{4} b_{3} \mathbf{k} \mathbf{j}+a_{4} b_{4} \mathbf{k}^{2} \\
= & \left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}\right) \mathbf{1}+\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right) \mathbf{i} \\
& \quad+\left(a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}\right) \mathbf{j}+\left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}\right) \mathbf{k}
\end{aligned}
$$

Analogously

$$
\begin{aligned}
\mathbf{a c}= & \left(a_{1} \mathbf{1}+a_{2} \mathbf{i}+a_{3} \mathbf{j}+a_{4} \mathbf{k}\right)\left(c_{1} \mathbf{1}+c_{2} \mathbf{i}+c_{3} \mathbf{j}+c_{4} \mathbf{k}\right) \\
= & \left(a_{1} c_{1}-a_{2} c_{2}-a_{3} c_{3}-a_{4} c_{4}\right) \mathbf{1}+\left(a_{1} c_{2}+a_{2} c_{1}+a_{3} c_{4}-a_{4} c_{3}\right) \mathbf{i} \\
& \quad+\left(a_{1} c_{3}-a_{2} c_{4}+a_{3} c_{1}+a_{4} c_{2}\right) \mathbf{j}+\left(a_{1} c_{4}+a_{2} c_{3}-a_{3} c_{2}+a_{4} c_{1}\right) \mathbf{k}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathbf{a b}+\mathbf{a c}= & \left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}+a_{1} c_{1}-a_{2} c_{2}-a_{3} c_{3}-a_{4} c_{4}\right) \mathbf{1} \\
& +\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}+a_{1} c_{2}+a_{2} c_{1}+a_{3} c_{4}-a_{4} c_{3}\right) \mathbf{i} \\
& +\left(a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}+a_{1} c_{3}-a_{2} c_{4}+a_{3} c_{1}+a_{4} c_{2}\right) \mathbf{j} \\
& +\left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}+a_{1} c_{4}+a_{2} c_{3}-a_{3} c_{2}+a_{4} c_{1}\right) \mathbf{k} \\
= & \left(a_{1}\left(b_{1}+c_{1}\right)-a_{2}\left(b_{2}+c_{2}\right)-a_{3}\left(b_{3}+c_{3}\right)-a_{4}\left(b_{4}+c_{4}\right) \mathbf{1}\right. \\
& +\left(a_{1}\left(b_{2}+c_{2}\right)+a_{2}\left(b_{1}+c_{1}\right)+a_{3}\left(b_{4}+c_{4}\right)-a_{4}\left(b_{3}+c_{3}\right) \mathbf{i}\right. \\
& +\left(a_{1}\left(b_{3}+c_{3}\right)-a_{2}\left(b_{4}+c_{4}\right)+a_{3}\left(b_{1}+c_{1}\right)+a_{4}\left(b_{2}+c_{2}\right) \mathbf{j}\right. \\
& +\left(a_{1}\left(b_{4}+c_{4}\right)+a_{2}\left(b_{3}+c_{3}\right)-a_{3}\left(b_{2}+c_{2}\right)+a_{4}\left(b_{1}+c_{1}\right) \mathbf{k}\right. \\
= & \left(a_{1} \mathbf{1}+a_{2} \mathbf{i}+a_{3} \mathbf{j}+a_{4} \mathbf{k}\right)\left(\left(b_{1}+c_{1}\right) \mathbf{1}+\left(b_{2}+c_{2}\right) \mathbf{i}+\left(b_{3}+c_{3}\right) \mathbf{j}+\left(b_{4}+c_{4}\right)\right) \mathbf{k} \\
= & \mathbf{a}(\mathbf{b}+\mathbf{c})
\end{aligned}
$$

4. Exercises 7.6.3, 7.6.4, and 7.6.5.

Solution 4.

For 7.6.3: Since 1 and \mathbf{i} are perpendicular to each other and of length 1 , then by the Pythagorean Theorem

$$
|\mathbf{1}+\mathbf{i}|=\sqrt{1^{2}+1^{2}}=\sqrt{2}
$$

Analogously for $|\mathbf{1}-\mathbf{i}|=\sqrt{2}$. Then

$$
\left|\mathbf{1}-\mathbf{i}^{2}\right|=|(\mathbf{1}-\mathbf{i})(\mathbf{1}+\mathbf{i})|=|\mathbf{1}-\mathbf{i}| \cdot|\mathbf{1}+\mathbf{i}|=\sqrt{2} \cdot \sqrt{2}=2
$$

For 7.6.4: Since $|\mathbf{i}|=1$, then $\left|\mathbf{i}^{2}\right|=|\mathbf{i}| \cdot|\mathbf{i}|=1 \cdot 1=1$. Therefore $\mathbf{1}-\mathbf{i}^{2}$ is at distance 1 from $\mathbf{1}$.

By the triangle inequality we have

$$
2=\left|\mathbf{1}-\mathbf{i}^{2}\right| \leq \mathbf{1}+\left|\mathbf{i}^{2}\right|=1+1=2
$$

The only way to have equality is if the vectors are pointing in the same direction. Therefore $\mathbf{1}-\mathbf{i}^{2}=c \mathbf{1}$. Since the length of the vector is 2 , then $c=2$. Therefore

$$
\begin{aligned}
\mathbf{1}-\mathbf{i}^{2} & =2 \mathbf{1} \\
\mathbf{i}^{2} & =-\mathbf{1}
\end{aligned}
$$

For 7.6.5: Exercises 7.6 .3 and 7.6 .4 only used that \mathbf{i} is perpendicular to $\mathbf{1}$ and has length 1 . Therefore, if \mathbf{u} is any vector of length 1 perpendicular to $\mathbf{1}$, then $\mathbf{u}^{2}=\mathbf{- 1}$.
5. Exercises 7.6.6 and 7.6.7.

Solution 5.

For 7.6.6: Since $\mathbf{i} \perp \mathbf{j}$, then $\mathbf{i}^{2} \perp \mathbf{i j}$, i.e, $\mathbf{- 1} \perp \mathbf{i j}$. But $\mathbf{1}$ and $\mathbf{- 1}$ are parallel vectors, so $\mathbf{1} \perp \mathbf{i j}$.
For 7.6.7: But then $(\mathbf{i j})^{2}=-\mathbf{1}$. Throughout these exercises, we've been assuming that there is a commutative product for the vectors in \mathbb{R}^{n} (for some $n \geq 3$). Therefore $\mathbf{i j}=\mathbf{j i}$. We also know that $\mathbf{j}^{2}=-\mathbf{1}$ and $\mathbf{i}^{2}=-\mathbf{1}$. Therefore

$$
-\mathbf{1}=(\mathbf{i} \mathbf{j})^{2}=(\mathbf{i} \mathbf{j})(\mathbf{j} \mathbf{i})=\mathbf{i}(\mathbf{j})^{2} \mathbf{i}=\mathbf{i}(-\mathbf{1}) \mathbf{i}=-\mathbf{1} \mathbf{i}^{2}=\mathbf{1}
$$

Contradiction! Therefore we can't satisfy all of the field axioms for an operation in \mathbb{R}^{n}, for $n \geq 3$.
6. Exercises 8.1.3 and 8.1.4.

Solution 6.

For 8.1.3: First do $z \rightarrow z+1$, then do $z \rightarrow 2 z$ (or do them in the other order).
For 8.1.4: You can shift horizontally from one semicircle to the other by translating the distance between the centers. So if you have your first circle with center at $\left(x_{1}, 0\right)$ and the second one at $\left(x_{2}, 0\right)$, then you let $\ell=x_{2}-x_{1}$ and you do the transformation $z \rightarrow z+\ell$. After that, you need only scale. If the first semicircle has radius r_{1} and the second one r_{2}, then you create the transformation $z \rightarrow \frac{r_{2}}{r_{1}} z$. Note that this transformation is legal because $r_{2} / r_{1}>0$.
7. In the statement of Pascals Theorem (problem 6 in Midterm 2) all six points are distinct. However, when two points are the same on a circle, we can still think of them as distinct but "infinitesimally" close. In this way the line they determine is the tangent to the conic at their common position.
(a) State the analogue of Pascals Theorem in the case when just two of the points of the hexagon, say A and F, coincide on the circle. Draw a picture.
(b) State the analogue of Pascals Theorem when $E=F$ and $C=D$. Draw a picture.

Solution 7.

(a) Given five points A, B, C, D, E on a circle. Let $G=A B \cap E D, H=B C \cap A E$, and $K=$ $C D \cap$ tangent at A. Then G, H, K are collinear. Figure 1 shows the configuration.
(b) Given four points A, B, C, E on a circle. Let $G=A B \cap C E, H$ be the intersection of $B C$ with the tangent at E, and K be the intersection of $A E$ with the tangent at C. Then G, H, K are collinear. Figure 2 shows the configuration.

Figure 1: Pascal's Hexagon when $A=F$.

Figure 2: Pascal's Hexagon with $C=D$ and $E=F$.
8. Lines $A P, B P$ and $C P$ meet the sides of triangle $\triangle A B C$ at points A_{1}, B_{1} and C_{1}, respectively. Suppose that lines $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$ intersect $B C, C A, A B$ at points A_{2}, B_{2}, C_{2}, respectively. Prove that the points A_{2}, B_{2} and C_{2} lie on a line.

Solution 8. $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1}$ are in perspective with respect to P. Therefore, by Desargues, the intersections of the corresponding sides are collinear. We have that $A_{2}=B C \cap B_{1} C_{1}, B_{2}=A C \cap A_{1} C_{1}$, and $C_{2}=A B \cap A_{1} B_{1}$, i.e., they are the intersections of the corresponding sided. Therefore A_{2}, B_{2}, C_{2} are collinear.

