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Abstract

In this paper we examine Grosswald’s conjecture on g(p), the least primitive root mod-
ulo p. Assuming the Generalized Riemann Hypothesis (GRH), and building on previous
work by Cohen, Oliveira e Silva and Trudgian, we resolve Grosswald’s conjecture by
showing that g(p) <

√
p− 2 for all p > 409. Our method also shows that under GRH

we have ĝ(p) <
√
p − 2 for all p > 2791, where ĝ(p) is the least prime primitive root

modulo p.

1 Introduction

Let g(p) denote the least primitive root modulo p. Burgess [2] and Wang [9] showed that
g(p)� p1/4+ε for any ε > 0. Grosswald [4] conjectured that

g(p) <
√
p− 2, (1)

∗Partially supported by a CSU Chico Internal Research Grant.
†Supported by Australian Research Council DECRA Grant DE120100173.
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for all primes p > 409. Clearly, the Burgess–Wang result implies (1) for all sufficiently large
p. In [3] it was shown that (1) is true for all 409 < p ≤ 2.5 ·1015 and for all p > 3.38 ·1071; one
of the ingredients in the proof is the explicit version of the Burgess character sum inequality
given in [8].

In this paper, contingent on the Generalized Riemann Hypothesis (GRH) we prove (1)
for the remaining values of p. In fact, we prove a stronger result. Let ĝ(p) denote the least
prime primitive root modulo p.

Theorem 1. Assume GRH. Then ĝ(p) <
√
p−2 for all primes p > 2791 and g(p) <

√
p−2

for all primes p > 409.

We use Theorem 1 to make the following improvement to Theorem G in [4].

Corollary 1. Assume GRH. For all primes p, the principal congruence subgroup Γ(p) can

be generated by the matrix

(
1 p
0 1

)
and p(p − 1)(p + 1)/12 canonically chosen hyperbolic

elements.

Proof. Our Theorem 1 covers the range of p in Theorem 2 in [4], whence the result follows.

The layout of this paper is as follows. In §2 we prove an explicit bound on the least prime
primitive root. Using this, we are able to prove Theorem 1 for all p > 1043. We introduce a
sieving inequality in §3, which allows us to complete the proof of Theorem 1.

Throughout the paper we write ω(m) to denote the number of distinct prime divisors
of m.

2 An explicit bound on the least prime primitive root

Theorem 2. Assume GRH. When p ≥ 109, the least prime primitive root ĝ(p) satisfies

ĝ(p) ≤
(

8

5

(
2ω(p−1) − 1

)
log p

)2

. (2)

Before we prove Theorem 2 we remark that the bound in (2) is not the sharpest known.
Shoup [7] has proved that

g(p)� ω(p− 1)4(log(ω(p− 1)) + 1)4(log p)2,

and, as remarked by Martin [5, p. 279], this bound also holds for ĝ(p). While this su-
persedes (2) for all sufficiently large primes p, the utility of Theorem 2 is in providing a
completely explicit estimate.

We require the following result, which is easily established following the proof of Lemma 2.1
in [1].
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Lemma 1 (Bach). Let χ(n) denote a non-principal Dirichlet character modulo p. When
x ≥ 1, we have: ∣∣∣∣∣∑

n<x

Λ(n)
(

1− n

x

)
− x

2

∣∣∣∣∣ ≤
√
x

20
+ 3, (3)

and ∣∣∣∣∣∑
n<x

Λ(n)χ(n)
(

1− n

x

)∣∣∣∣∣ ≤ c(p, x)
√
x log p, (4)

where

c(p, x) :=
2

3

(
1 +

2√
x

+
3

x3/2

)(
1 +

5/3

log p

)
+

log x+ 2√
x log p

.

Proof of Theorem 2. We may assume ĝ(p) > 1099, or else there is nothing to prove; indeed,
one has ((8/5) log(109))2 ≈ 1099.4. As in Burgess [2, §4], we rewrite the function

f(n) =

{
1 if n is a primitive root modulo p

0 otherwise,

as

f(n) =
φ(p− 1)

p− 1

1 +
∑
d|p−1
d>1

µ(d)

φ(d)

∑
χ

ord(χ)=d

χ(n)

 ,

where
∑

χ is taken over all the φ(d) Dirichlet characters of order d modulo p. Suppose
that f(n) = 0 for all primes n (and hence all prime powers) with n < x. We may assume
x ≥ 1099. We have

1 +
∑
d|p−1
d>1

µ(d)

φ(d)

∑
χ

ord(χ)=d

χ(n) = 0 (5)

for all prime powers n < x. We multiply (5) by Λ(n)(1− n/x) and sum over all n < x. This
gives ∑

n<x

Λ(n)
(

1− n

x

)
+
∑
d|p−1
d>1

µ(d)

φ(d)

∑
χ

ord(χ)=d

∑
n<x

Λ(n)χ(n)
(

1− n

x

)
= 0.

We apply Lemma 1 and observe that c(p, x) ≤ 7/9 provided p ≥ 109 and x ≥ 1099. Therefore

x

2
≤
√
x

20
+ 3 +

∑
d|p−1
d>1

µ(d)6=0

7

9

√
x log p,

which implies

√
x ≤ 1

10
+

6√
x

+
14

9

(
2ω(p−1) − 1

)
log p ≤ 8

5

(
2ω(p−1) − 1

)
log p .

The result follows.
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Corollary 2. Theorem 1 is true except possibly when p ∈ (2.5 · 1015, 1043) and ω(p − 1) ∈
[7, 28].

Proof. Unconditionally, Robin (see [6, Thm 11]) proved

ω(n) ≤ 1.385
log n

log log n
, (n ≥ 3).

This, when combined with Theorem 2, shows that ĝ(p) <
√
p− 2 provided p ≥ 1049. Hence

we may assume p ≤ 1049. But the assumption p ≤ 1049 leads to ω(p − 1) ≤ 31 and
now Theorem 2 implies the result provided p ≤ 1047. Repeating this process, we find that
ω(p− 1) ≤ 28 and p ≤ 1043. On the other hand, in light of the computations carried out in
[3, §4], we may assume p ≥ 2.5 · 1015, in which case Theorem 2 proves the result provided
ω(p− 1) ≤ 6.

3 Computations using the sieve

In this section we follow closely the argument given in [3, §3]. Suppose e is an even divisor of
p− 1. Let p1, . . . , ps be the primes dividing p− 1 that do not divide e. Set δ = 1−

∑s
i=1 p

−1
i ,

and set n = ω(p− 1). In applying our method it is essential to choose δ > 0.

Theorem 3. Assume GRH. If ĝ(p) > x, then we have:

ĝ(p) ≤
(

2c(p, x)

(
2 +

s− 1

δ

)
2n−s log p

)2

. (6)

We postpone the proof of Theorem 3 until §3.2. From Theorem 3 we immediately obtain
the following corollary which is more readily applied.

Corollary 3. Assume GRH. If p ≥ p0, then

ĝ(p) ≤
(
C

(
2 +

s− 1

δ

)
2n−s log p

)2

, (7)

where the constant is given in Table 1.

Proof. When p ≥ p0, the right-hand side of (7) is bounded below by x := ((4/3)4 log p0)
2.

Hence we may assume ĝ(p) > x, or else there is nothing to prove. Now Theorem 3 establishes
the result with C(p0) := 2c(p0, x).

Our proof of Theorem 1 will apply Theorem 3 directly, but we have included Corollary 3
as it may have application elsewhere.

Corollary 4. Theorem 1 is true except possibly when ω(p− 1) ∈ [12, 13, 14].
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p0 102 104 106 108 1010

C 2.1127 1.6821 1.5556 1.496 1.4614

p0 1012 1014 1016 1018 1020

C 1.4389 1.4231 1.4114 1.4023 1.3952

Table 1: Values of C for various choices of p0

Proof. In light of Corollary 2, we may assume 7 ≤ n ≤ 28 and 2.5 · 1015 < p < 1043. We
have the obvious lower bound p − 1 ≥ q1 . . . qn, where qi denotes the ith prime, and hence
we may assume

p > max

{
1 +

n∏
i=1

qi , 2.5 · 1015

}
.

For example, when n = 15, this leads to p > 6.1 · 1017.
Set x =

√
p − 2. We may assume ĝ(p) > x or else there is nothing to prove. Hence the

conclusion of Theorem 3 holds. Now each choice of s allows us to show that

ĝ(p) <
√
p− 2 (8)

holds when p is larger than an explicitly computable value; one simply bounds the right-hand
side of (6) from above, using1 δ ≥ 1−

∑n
i=n−s+1 pi. Of course, we then choose the value of s

that gives the best result. For example, when n = 15 we find that s = 12 leads to

δ ≥ 1− (1/7 + 1/13 + · · ·+ 1/47) > 0.3717

and therefore the right-hand side of (6) is less than
√
p − 2 provided p ≥ 3.2 · 1016; hence

any exception to (8) must satisfy p < 3.2 · 1016. Notice that because our lower and upper
bounds on any potential exceptions overlap, this proves the result when n = 15. The best
choice turns out to be s = n− 2 when 7 ≤ n ≤ 12 and s = n− 3 when 13 ≤ n ≤ 28. In fact,
this is enough to prove (8) except when n = 12, 13, 14. The lower bound of 1 +

∏n
i=1 qi does

the job when 15 ≤ n ≤ 28 and the lower bound of 1.6 · 1015 does the job when 7 ≤ n ≤ 11.

3.1 An algorithm

In order to deal with the cases when n = 12, 13, 14, we introduce an algorithm. Before giving
the algorithm, we explain the main idea.

Suppose n = 14. Using the idea presented in the proof of Corollary 4, we find that
any exception to Grosswald’s conjecture must lie in the interval (1.30 · 1016, 1.71 · 1016). In
principle one could check the conjecture directly for each prime p in this interval, but the size

1One helpful fact — if the right-hand side of (6) is less than
√
p− 2 for some p, then the same is true for

all larger p.
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of the interval makes this prohibitive. There are 2.05 · 1015 odd values of p to consider. (Of
course many of these are not prime, but there are still about 1014 primes in this interval.)
Instead, we break the problem into cases depending upon which primes divide p − 1. We
already know that 2 divides p − 1, so we start with the prime 3. If 3 divides p − 1, then
we have one third as many values of p to check, roughly 6.83 · 1014 values of p. If 3 does
not divide p − 1, then this leads to an improved lower bound on p, as well as an improved
lower bound on δ and hence an improved upper bound on p; in short, the interval under
consideration shrinks. In this particular case, the interval shrinks to (2.04 · 1017, 1.45 · 1015),
which is empty, so there is nothing to check.

Returning to the case where 3 divides p− 1, the number of exceptions is still quite large.
However, we may consider whether 5 divides p−1. We continue in this way until the number
of possible values of p under consideration is less than 106. At that point we go through the
list and throw out all values of p except those where p is prime, ω(p − 1) = 14, and p − 1
satisfies the given divisibility conditions (depending upon which sub-case we are considering).
We append these exceptional values of p to a list and continue this recursive procedure until
we have exhausted all possibilities. One can easily find the least prime primitive root for the
list of exceptions via standard methods and check the conjecture directly. When n = 14,
this algorithm takes only 5 seconds (on a 1.7 GHz MacBook Air) to complete and the list
of exceptions is empty, so there is nothing further to check. The number of exceptions for
other values of n is given in Table 2.

Table 2: Number of exceptions for n = 12, 13, 14
n 12 13 14

# of exceptions 61, 114 6, 916 0

For completeness, we give the pseudocode for our recursive algorithm. Suppose X ∪ Y
consists of the first k primes for some k ∈ Z≥0. Algorithm 1 will verify ĝ(p) <

√
p− 2 when

ω(p− 1) = n under the assumption that q divides p− 1 for all q ∈ X and q does not divide
p−1 for all q ∈ Y . More precisely, rather than verifying the conjecture for all p, the algorithm
will generate a manageable list of possible exceptions which can be checked individually, as
described above. The sets X and Y are allowed to be empty, although in practice we may
always assume 2 ∈ X. (Running the algorithm with n = 14, X = {2}, Y = ∅ will carry out
the computation described above. The Sage code is available on the website of one of the
authors: http://myweb.csuchico.edu/~kmcgown/code/grosswald_GRH_code.zip.)

Proof of Theorem 1. We have implemented Algorithm 1 in Sage. Running our code on
n = 12, 13, 14, including finding the least prime primitive root and checking the conjecture
directly for the list of 68, 030 exceptions, takes about 2 minutes. In light of Corollary 4, this
proves the theorem.

6



Algorithm 1 Grosswald(n,X,Y)

1: L := first n primes not in Y
2: lower := max{product(L) + 1, 2 · 1015}
3: upper := 0
4: for s ∈ {1, . . . , n− 1} do
5: M := largest s primes in L
6: δ := 1−

∑
q∈M

1
q

7: if δ ≤ 0 then
8: continue
9: end if
10: Choose p large enough so that when x =

√
p− 2, we have:(

2c(p, x)

(
2 +

s− 1

δ

)
2n−s log(p)

)2

< x

11: if upper = 0 or p < upper then
12: upper := p; ŝ := s; δ̂ := δ; M̂ := M
13: end if
14: end for
15: print(n, ŝ, δ̂, M̂ , lower, upper)
16: prodX := product(X)
17: enum := (upper − lower)/prodX
18: if enum ≤ 0 then
19: print(“Nothing more to check.”)
20: else if enum > 106 then
21: print(“Break into cases.”)
22: q :=smallest prime not in X ∪ Y
23: Grosswald(n,X ∪ {q}, Y )
24: Grosswald(n,X, Y ∪ {q})
25: else
26: print(“Find all exceptions.”)
27: I := [(lower − 1)/prodX, (upper − 1)/prodX] ∩ Z
28: Remove the elements of I divisible by primes in Y
29: for k ∈ I do
30: p := k ∗ prodX + 1
31: if is prime(p) and length(prime divisors(p− 1))=n then
32: append p to global list of exceptions
33: end if
34: end for
35: end if
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3.2 Proof of Theorem 3

Let p be an odd prime. Let e be an even divisor of p − 1. We say that n is e-free if the
equation yd ≡ n (mod p) is insoluble for all divisors d of e with d > 1. An integer is a
primitive root if and only if it is (p − 1)-free. Note also that being e-free depends only on
the radical of e, that is, on the product of the distinct prime divisors of e. We define the
function

fe(n) =

{
1 if n is e-free

0 otherwise.

Define the multiplicative function θ(n) = φ(n)/n, where φ(n) is Euler’s totient function. For
the rest of the proof we will need the following:

Lemma 2.

fe(n) = θ(e)

1 +
∑
d|e
d>1

µ(d)

φ(d)

∑
χ

ord(χ)=d

χ(n)

 .

Proof. Let g be a primitive root modulo p. Let n = gv, and let e(t) = e2πit. Then∑
χ

ord(χ)=d

χ(n) =
∑

1≤k≤d
gcd (k,d)=1

e

(
kv

d

)
=
∑
t|d

µ(t)

d/t∑
k=1

e

(
vtk

d

)
.

The inner sum is 0 whenever tv
d
6∈ Z and is d

t
otherwise. Let m = gcd (d, v). Since µ(ab) =

µ(a)µ(b) when gcd (a, b) = 1 and 0 otherwise, then the sum is∑
χ

ord(χ)=d

χ(n) =
∑
t|m

µ

(
t · d
m

)
m

t
=

∑
t|m

gcd (t, dm)=1

µ(t)µ

(
d

m

)
m

t

= µ

(
d

m

)
m

∑
t|m

gcd (t, dm)=1

µ(t)

t
= µ

(
d

m

)
m
∏
p|m
p 6 | d

m

(
1− 1

p

)
=

φ(d)

φ
(
d
m

)µ( d

m

)
.

When n is e-free, we have gcd (v, d) = 1 for all d|e. Therefore

1 +
∑
d|e
d>1

µ(d)

φ(d)

∑
χ

ord(χ)=d

χ(n) =
∑
d|e

µ(d)

φ(d)

(
φ(d)

φ (d)
µ (d)

)
=
∑
d|e

µ(d)2

φ(d)
=
∏
p|e

(
1 +

1

p− 1

)
=

e

φ(e)
.

When n is not e-free, then M = gcd (e, v) > 1. We may assume e is squarefree. Then

1 +
∑
d|e
d>1

µ(d)

φ(d)

∑
χ

ord(χ)=d

χ(n) =
∑
d|e

µ(d)µ
(

d
(d,v)

)
φ
(

d
(d,v)

) =
∑
d| e

M

∑
k|M

µ(dk)µ(d)

φ(d)
=
∑
d| e

M

µ2(d)

φ(d)

∑
k|M

µ(k) = 0.

The last equality follows from
∑

d|n µ(d) = 0 for all n > 1.
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Then, recalling the definitions of s, pi and δ from the start of §3, we see

s∑
i=1

fpie(n)− (s− 1)fe(n)

{
= 1 if n is (pie)-free for all i

≤ 0 otherwise,

whence

fp−1(n) ≥
s∑
i=1

fpie(n)− (s− 1)fe(n)

=
s∑
i=1

(fpie(n)− θ(pi)fe(n)) + δfe(n) . (9)

Observe that

fpie(n)− θ(pi)fe(n) = θ(pie)
∑
d|pie
d-e
d>1

µ(d)

φ(d)

∑
χ

ord(χ)=d

χ(n)

= θ(pie)
∑
d|e

µ(pid)

φ(pid)

∑
χ

ord(χ)=pid

χ(n). (10)

Inserting (10) into (9) leads to

1 +
1

δ

s∑
i=1

θ(pi)
∑
d|e

µ(pid)

φ(pid)

∑
χ

ord(χ)=pid

χ(n) +
∑
d|e
d>1

µ(d)

φ(d)

∑
χ

ord(χ)=d

χ(n) ≤ fp−1(n)

δθ(e)
. (11)

Suppose fp−1(n) = 0 for all primes n (and hence all prime powers) with n < x. We multiply
(11) by Λ(n)(1− n/x), sum over all n < x, which yields∑

n<x

Λ(n)
(

1− n

x

)
+

1

δ

s∑
i=1

θ(pi)
∑
d|e

µ(pid)

φ(pid)

∑
χ

ord(χ)=pid

∑
n<x

χ(n)Λ(n)
(

1− n

x

)

+
∑
d|e
d>1

µ(d)

φ(d)

∑
χ

ord(χ)=d

∑
n<x

χ(n)Λ(n)
(

1− n

x

)
≤ 0.

We write ∑
n<x

Λ(n)
(

1− n

x

)
=
x

2
+G(x) ,
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and use the estimates in (3) and (4) to obtain

x

2
+G(x)

≤ 1

δ

s∑
i=1

θ(pi)
∑
d|e

µ(pid)6=0

c(p, x)
√
x log p+

∑
d|e
d>1

µ(d)6=0

c(p, x)
√
x log p

≤ c(p, x)
√
x log p

[(
1 +

1

δ

s∑
i=1

θ(pi)

)
2n−s − 1

]

= c(p, x)
√
x log p

[(
2 +

s− 1

δ

)
2n−s − 1

]
.

This leads to

√
x ≤ 2|G(x)|√

x
+ 2c(p, x)

[(
2 +

s− 1

δ

)
2n−s − 1

]
log p

≤ 1

10
+

6√
x

+ 2c(p, x)

[(
2 +

s− 1

δ

)
2n−s − 1

]
log p

≤ 2c(p, x)

(
2 +

s− 1

δ

)
2n−s log p− 191

90
− 4

3
log p.

The result follows.
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