The least quadratic non-residue modulo a prime and related problems

Enrique Treviño

Lake Forest College

Number Theory in Illinois: A conference in honor of the Batemans and Halberstam June 3, 2014

COLLEGE

```
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, \ldots
```

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

イロト 不得 とくほ とくほう

```
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, \ldots
```

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

```
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, \ldots
```

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

```
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, \ldots
```

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

```
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, \ldots
```

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Let *n* be a positive integer. For $q \in \{0, 1, 2, ..., n-1\}$, we call *q* a quadratic residue mod *n* if there exists an integer *x* such that $x^2 \equiv q \pmod{n}$. Otherwise we call *q* a quadratic non-residue.

- For *n* = 3, the quadratic residues are {0, 1} and the non-residue is 2.
- For *n* = 5, the quadratic residues are {0, 1, 4} and the non-residues are {2,3}.
- For *n* = 7, the quadratic residues are {0, 1, 2, 4} and the non-residues are {3, 5, 6}.
- For n = p, an odd prime, there are ^{p+1}/₂ quadratic residues and ^{p-1}/₂ non-residues.

イロト 不得 とくほ とくほ とうほ

Least non-residue

р	Least non-residue	
3	2	
7	3	
23	5	
71	7	
311	11	
479	13	
1559	17	
5711	19	
10559	23	
18191	29	
31391	31	
422231	37	
701399	41	
366791	43	
3818929	47	

Enrique Treviño The least quadratic non-residue and related problems

2

æ

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

- $\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

• $\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$
.

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

• $\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$
.

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

• $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633.$
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p).$

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633.$
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p).$

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p).$

ヘロト ヘアト ヘビト ヘビト

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

History

The first breakthrough came in 1914 with some clever ideas from I.M. Vinogradov. Consider the function χ where $\chi(a)$ is 1 if *a* is a nonzero quadratic residue mod *p*, -1 if its a non-residue and 0 for *a* = 0. χ is then a primitive Dirichlet character mod *p*.

- Vinogradov noted that if $\sum_{1 \le a \le n} \chi(a) < n$, then $g(p) \le n$.
- He then proved $\sum_{1 \le a \le n} \chi(a) < \sqrt{p} \log p$, which shows that

 $g(p) \leq \sqrt{p \log p}.$

 Then using that χ(ab) = χ(a)χ(b) he was able to improve this to show the asymptotic inequality g(p) ≪ p^{1/2√e+ε}.

ヘロン ヘアン ヘビン ヘビン

History

The first breakthrough came in 1914 with some clever ideas from I.M. Vinogradov. Consider the function χ where $\chi(a)$ is 1 if *a* is a nonzero quadratic residue mod *p*, -1 if its a non-residue and 0 for *a* = 0. χ is then a primitive Dirichlet character mod *p*.

- Vinogradov noted that if $\sum_{1 \le a \le n} \chi(a) < n$, then $g(p) \le n$.
- He then proved $\sum_{1 \le a \le n} \chi(a) < \sqrt{p} \log p$, which shows that
 - $g(p) \leq \sqrt{p \log p}.$
- Then using that χ(ab) = χ(a)χ(b) he was able to improve this to show the asymptotic inequality g(p) ≪ p^{1/2√e+ε}.

ヘロト 人間 とくほ とくほ とう

3

History

The first breakthrough came in 1914 with some clever ideas from I.M. Vinogradov. Consider the function χ where $\chi(a)$ is 1 if *a* is a nonzero quadratic residue mod *p*, -1 if its a non-residue and 0 for *a* = 0. χ is then a primitive Dirichlet character mod *p*.

- Vinogradov noted that if $\sum_{1 \le a \le n} \chi(a) < n$, then $g(p) \le n$.
- He then proved $\sum_{1 \le a \le n} \chi(a) < \sqrt{p} \log p$, which shows that $g(p) \le \sqrt{p} \log p$.
- Then using that χ(ab) = χ(a)χ(b) he was able to improve this to show the asymptotic inequality g(p) ≪ p^{1/2√e+ε}.

・ロト ・ 理 ト ・ ヨ ト ・

The first breakthrough came in 1914 with some clever ideas from I.M. Vinogradov. Consider the function χ where $\chi(a)$ is 1 if *a* is a nonzero quadratic residue mod *p*, -1 if its a non-residue and 0 for *a* = 0. χ is then a primitive Dirichlet character mod *p*.

- Vinogradov noted that if $\sum_{1 \le a \le n} \chi(a) < n$, then $g(p) \le n$.
- He then proved $\sum_{1 \le a \le n} \chi(a) < \sqrt{p} \log p$, which shows that $g(p) \le \sqrt{p} \log p$.
- Then using that χ(ab) = χ(a)χ(b) he was able to improve this to show the asymptotic inequality g(p) ≪ p^{1/2√e+ε}.

・ロト ・ 理 ト ・ ヨ ト ・

э

It took almost 50 years before the next breakthrough. It came from the following theorem of Burgess:

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where q > 1, r is a positive integer and $\epsilon > 0$ is a real number. Then

$$|S_{\chi}(M,N)| = \left|\sum_{M < n \le M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon}$$

for r = 1, 2, 3 and for any $r \ge 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Consider

 $\left|\sum_{n\leq N}\chi(n)\right|.$

By Burgess

$$\sum_{n\leq N}\chi(n)\bigg|\ll N^{1-\frac{1}{r}}q^{\frac{r+1}{4r^2}+\epsilon}.$$

However, if $\chi(n) = 1$ for all $n \leq N$, then

$$N \leq \left| \sum_{n \leq N} \chi(n) \right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon},$$

so

$$N^{\frac{1}{r}} \ll q^{\frac{r+1}{4r^2}+\epsilon}$$

Hence

$$N \ll q^{\frac{1}{4}+\frac{1}{4r}+\epsilon r}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Let p > 3 be a prime. Let $g_k(p)$ be the least *k*-th power non-residue mod *p*. Norton showed in the late 60's that

$$g_k(p) \leq \left\{egin{array}{cc} 4.7 p^{1/4} \log p & ext{if } k = 2 ext{ and } p \equiv 3 \pmod{4}, \ 3.9 p^{1/4} \log p & ext{otherwise}. \end{array}
ight.$$

Theorem (ET)

 $g_k(p) \leq \begin{cases} 1.1p^{1/4}\log p & \text{if } k = 2 \text{ and } p \equiv 3 \pmod{4}, \\ 0.9p^{1/4}\log p & \text{otherwise.} \end{cases}$

Let p > 3 be a prime. Let $g_k(p)$ be the least *k*-th power non-residue mod *p*. Norton showed in the late 60's that

$$g_k(p) \leq \left\{egin{array}{cc} 4.7 p^{1/4} \log p & ext{if } k = 2 ext{ and } p \equiv 3 \pmod{4}, \ 3.9 p^{1/4} \log p & ext{otherwise}. \end{array}
ight.$$

Theorem (ET)

$$g_k(p) \leq \left\{ egin{array}{cc} 1.1p^{1/4}\log p & \textit{if } k=2 \textit{ and } p\equiv 3 \pmod{4}, \ 0.9p^{1/4}\log p & \textit{otherwise.} \end{array}
ight.$$

- 4 同 ト 4 回 ト 4 回 ト

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with $N \ge 1$ and let $r \ge 2$, then

 $|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$

Theorem (ET)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \le 2.71 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with $N \ge 1$ and let $r \ge 2$, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \le 2.71 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET)

Let g(p) be the least quadratic nonresidue mod p. Let p be a prime greater than 10^{4685} , then $g(p) < p^{1/6}$.

Enrique Treviño The least quadratic non-residue and related problems

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Other Applications of the Explicit Estimates

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer x ∈ [1, p − 1] with log_g x = x, that is, g^x ≡ x (mod p).

Other Applications of the Explicit Estimates

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer x ∈ [1, p − 1] with log_g x = x, that is, g^x ≡ x (mod p).

Other Applications of the Explicit Estimates

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer x ∈ [1, p − 1] with log_g x = x, that is, g^x ≡ x (mod p).

Vinogradov's Trick

Lemma

Let $x \ge 259$ be a real number, and let $y = x^{1/\sqrt{e}+\delta}$ for some $\delta > 0$. Let χ be a non-principal Dirichlet character mod p for some prime p. If $\chi(n) = 1$ for all $n \le y$, then

$$\sum_{n \le x} \chi(n) \ge x \left(2 \log \left(\delta \sqrt{e} + 1 \right) - \frac{4}{\log^2 x} - \frac{1}{\log^2 y} - \frac{1}{x} - \frac{2}{\log x} \right).$$

Proof.

$$\sum_{n \le x} \chi(n) = \sum_{n \le x} 1 - 2 \sum_{\substack{y < q \le x \\ \chi(q) = -1}} \sum_{n \le \frac{x}{q}} 1,$$

where the sum ranges over q prime. Therefore we have

$$\sum_{n \le x} \chi(n) \ge \lfloor x \rfloor - 2 \sum_{y < q \le x} \left\lfloor \frac{x}{q} \right\rfloor \ge x - 1 - 2x \sum_{y < q \le x} \frac{1}{q} - 2 \sum_{y < q \le x} 1.$$

Proof of Main Corollary

Let $x \ge 259$ be a real number and let $y = x^{\frac{1}{\sqrt{e}} + \delta} = p^{1/6}$ for some $\delta > 0$. Assume that $\chi(n) = 1$ for all $n \le y$. Now we have

$$2.71x^{1-\frac{1}{r}}p^{\frac{r+1}{4r^2}}(\log p)^{\frac{1}{r}} \ge x\left(2\log(\delta\sqrt{e}+1) - \frac{4}{\log^2 x} - \frac{1}{\log^2 y} - \frac{1}{x} - \frac{2}{\log x}\right)$$

Now, letting $x = p^{\frac{1}{4} + \frac{1}{2r}}$ we get

$$2.71p^{\frac{\log\log p}{r\log p} - \frac{1}{4r^2}} \ge 2\log(\delta\sqrt{e} + 1) - \frac{4}{\log^2 x} - \frac{1}{\log^2 y} - \frac{1}{x} - \frac{2}{\log x}.$$
 (1)

Picking r = 22, one finds that $\delta = 0.00458...$ For $p \ge 10^{4685}$, the right hand side of (1) is bigger than the left hand side.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you!

Enrique Treviño The least quadratic non-residue and related problems

< 🗇 ▶

э

э.

э