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Abstract

Let n be a positive integer and S2(n) be the sum of the squares of its decimal digits. When there
exists a positive integer k such that the k-th iterate of S2 on n is 1, i.e., Sk

2 (n) = 1, then n is called a
happy number. The notion of happy numbers has been generalized to different bases, different powers
and even negative bases. In this article we consider generalizations to fractional number bases. Let
Se, p

q
(n) be the sum of the e-th powers of the digits of n base p/q. Let k be the smallest nonnegative

integer for which there exists a positive integer m > k satisfying Sk
e, p

q
(n) = Sm

e, p
q

(n). We prove that such

a k, called the height of n, exists for all n, and that, if q = 2 or e = 1, then k can be arbitrarily large.

1 Introduction

Let n be a positive integer and S2(n) be the sum of the squares of its decimal digits. It is
well known (for a complete proof look at [6]) that if you apply a sufficiently high iterate of
S2 to n, the result is either 1 or is in the cycle

4→ 16→ 37→ 58→ 89→ 145→ 42→ 20→ 4.

If the iteration reaches 1, we say n is happy. A natural generalization is to allow for any
base b ≥ 2 representation of the digits and to replace sum of squares of digits, with the sum
of e-th powers of the digits for some integer e ≥ 1. Let Se,b(n) be the sum of e-th powers of
the digits of n when n is written in base b. If there exists an integer k such that Ske,b(n) = 1,
we say n is an e-power b-happy number (when e = 2, we call n a b-happy number). Suppose
that there exist integers k and m with 0 ≤ k < m such that Ske,b(n) = Sme,b(n), then the

iterates of n under Se,b will cycle through the sequence {Ske,b(n), Sk+1
e,b (n), . . . , Sm−1

e,b (n)}. If

m− k is minimal, then we say that n reaches the cycle (Ske,b(n), Sk+1
e,b (n), . . . , Sm−1

e,b (n)). If k
is the smallest non-negative integer for which this is true, we say k is the height of n.

The study of which cycles can be reached for e ∈ {2, 3} and 2 ≤ b ≤ 10 has been
done by Grundman and Teeple in [3]. The techniques in [3] can easily be used to find the
cycles for other choices of e and b. Another generalization is to allow the base b to be a
negative number. It turns out that for a positive integer n, there is a unique set of digits
0 ≤ ai ≤ |b| − 1 such that n =

∑r
i=0 aib

i. Grundman and Harris, in [5], find the cycles
reached for −2 ≥ b ≥ −10 and e = 2. The authors also study in what cases there exist
consecutive b-happy numbers in an arithmetic progression, generalizing work of El-Sedy and
Siksek [2] and the work of Grundman and Teeple [4].

In [1], Bland et al. addressed a series of questions regarding a generalization of happy
numbers to fractional bases. For integers p > q > 0 with gcd(p, q) = 1, each positive integer

1



n has a unique representation in base p/q. Namely, there exists an integer r ≥ 0 such that
for every integer i ∈ {0, 1, . . . , r} there exists an integer ai ∈ {0, 1, . . . , p − 1} with ar 6= 0
and

n =
r∑
i=0

ai

(
p

q

)i
.

For our notation, we will say n = arar−1 · · · a1a0 p
q
. Let Se, p

q
(n) be the sum of the e-th powers

of the digits of n when written in fractional base p/q, i.e.,

Se, p
q
(n) =

r∑
i=0

aei .

In [1], the authors studied the case when e = 2 and proved that there are no happy numbers
greater than 1 for any fractional base. They mainly study the fractional base 3/2, finding
the possible cycles that S2, 3

2
can reach. They end the paper with several questions. The

three we will focus on in this paper are the following:

1. Can we find the cycles reached by Se,b for different e-th powers when p/q = 3/2?

2. Can we find the cycles reached by Se,b for different p/q when we restrict to e = 2?

3. Are there positive integers n of arbitrarily large height?

In the case of positive integer bases, that there are numbers with arbitrary height is relatively
simple to prove because you can find an n such that Se,b(n) = k for any positive integer k
by having n be a number with k 1’s in its base b expansion. For example, let a1 = 10, then
a1 has height 1 since S2(10) = 1. Let

a2 = 11 · · · 1︸ ︷︷ ︸
10

.

Since S2(a2) = 10, a2 has height 2. Let

an = 11 · · · 1︸ ︷︷ ︸
an−1

.

Then an has height n. This simple process creates a sequence of numbers with larger and
larger heights by attaching the appropriate number of 1’s to a number. The problem with
fractional bases is that not every choice of digits leads to an integer. For example 11 3

2
is not

an integer, since 1 + 3
2
6∈ Z.

We answer the three questions with two theorems. The first theorem answers two of the
questions.

Theorem 1. Let p > q be positive integers with gcd(p, q) = 1, and let e be a positive integer.
Then, for every positive integer n, the repeated iterations of the function Se, p

q
on n will

eventually reach a cycle. In particular, the possible cycles reached for 1 ≤ e ≤ 12, p/q = 3/2
can be found in Table 2, answering the first question. Also, the possible cycles reached for
e ∈ {2, 3, 4} and p/q ∈ {5/2, 5/3, 5/4, 7/2} are in Table 3, answering the second question.

The second theorem answers the third question for a special class of fractional bases that
includes 3/2, and for all fractional bases when e = 1.
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Theorem 2. Let p > q be positive integers with gcd(p, q) = 1, and let e and H be positive
integers. If q = 2 or e = 1, then there exists an integer n such that the height of n is H.

In Section 2, we will present useful background on fractional base number systems. In
Section 3, we prove Theorem 1. Finally, in Section 4, we prove Theorem 2.

2 Fractional base number systems

As mentioned in the introduction, for any p/q with gcd(p, q) = 1 and p > q, for every
positive integer n, there exist fractional digits a0, a1, . . . , ar satisfying 0 ≤ ai < p for i ∈
{0, 1, . . . , r − 1} and 0 < ar < p such that

n =
r∑
i=0

ai

(
p

q

)i
.

We will use the following notation to denote that ai are the fractional digits of n base p/q.

n = arar−1ar−2 . . . a2a1a0 p
q
.

For example base 3/2 uses numbers 0, 1, 2 as digits. Table 1 is a table of numbers in base
3/2:

n n in base 3/2 n n in base 3/2
0 0 3

2
6 210 3

2

1 1 3
2

7 211 3
2

2 2 3
2

8 212 3
2

3 20 3
2

9 2100 3
2

4 21 3
2

10 2101 3
2

5 22 3
2

11 2102 3
2

Table 1: The first 12 non-negative integers in the 3/2 base number system.

It is easy to find n given its expansion in base p/q, but going the other way around is a
little harder. Suppose we have the number n and we want to find its fractional digits base
p/q. Let n = arar−1 · · · a1a0 p

q
. Then

n− a0 =

(
p

q

)
arar−1 · · · a1 p

q
.

The left side is an integer, so the right side is also an integer. Since gcd(p, q) = 1,
q|arar−1 · · · a1 p

q
, and so p|(n − a0). Therefore n ≡ a0 mod p. There is a unique a0 in

{0, 1, 2, · · · , p− 1} that is congruent to n modulo p. But we also have

arar−1 · · · a1 p
q

=

(
q

p

)
(n− a0).

We repeat the process and we can say that

n ≡
(
q

p

)
(n− a0)− a1 mod p.
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Therefore, we can find a1. We can repeat this process until we reach 0 and find all of the
digits of n.

We can summarize the algorithm to translate numbers into the fractional base p
q

as follows:

1. n0 = n (mod p).

2. n = (n− n0)
(
q
p

)
.

3. Repeat steps 1 and 2, until n is zero.

As an example, suppose we want to find the digits of 12 in base 3/2. First we have
12 ≡ 0 mod 3, so a0 = 0. Then we calculate (12− 0)2

3
= 8. We find 8 ≡ 2 mod 3, so a1 = 2.

Then we find (8− 2)2
3

= 4 and 4 ≡ 1 mod 3, so a2 = 1. Then we find (4− 1)(2/3) = 2 and

2 ≡ 2 mod 3, so a3 = 2. Since the next step yields 0, we’ve found that 12 = 2120 3
2
.

3 The cycles formed when iterating Se, 32

An integer n > 1 cannot be happy in a fractional base number system. Indeed suppose that
n is e-power p/q-happy, then Sme, p

q
(n) = 1 for some minimal positive integer m. But then

k = Sm−1
e, p

q
(n) must satisfy that the sum of the e-th powers of its digits is 1. Therefore the

fractional base expansion of k is 100 · · · 0 p
q
. But that means k = (p/q)r for some integer

r. This number is not an integer unless r = 0, which would imply k = 1, but we assumed
k > 1. While happiness is impossible, we can still search which cycles can be reached. For
us to be able to prove that the determination of cycles is complete, we need to first prove
the following lemma.

Lemma 1. Let p/q satisfy p > q and gcd(p, q) = 1, and let e be a positive integer. Then,
there exists an n∗ such that Se, p

q
(n∗) ≥ n∗, and Se, p

q
(n) < n for all n > n∗.

The values of n∗ for different values of e and p/q = 3/2 can be found in the last column
of Table 2. The values of n∗ for e ∈ {2, 3, 4} and p/q ∈ {5/2, 5/3, 5/4, 7/2} are in Table 3.

Proof. Let n be a positive integer. Then

n = arar−1 · · · a1a0 p
q

=
r∑
i=0

ai

(
p

q

)i
≥ ar

(
p

q

)r
≥
(
p

q

)r
,

so r ≤ log p
q
(n). But then

Se, p
q
(n) =

r∑
i=0

aei <

r∑
i=0

pe = (r + 1)pe ≤ (log p
q
(n) + 1)pe.

Since pe is a constant, then for a large enough n,

n > (log p
q
(n) + 1)pe > Se, p

q
(n). (1)

Indeed, one can confirm with L’Hopital’s rule that n/(C log(n)) → ∞ as n → ∞ for any
constant C > 0.
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e Cycles n∗

1 (1), (2) 2
2 (1), (5, 8, 9) 8
3 (1), (9), (10), (17, 18) 32
4 (1), (51), (52) 77
5 (1), (131), (98, 99) 185
6 (1), (197, 260, 387, 323, 263, 450), (324, 131, 259) 419
7 (1), (771, 516, 643, 518) 1211
8 (1), (1539, 775, 1284), (1287, 1794, 1796, 2052), (1032), (1033) 2723
9 (1), (2566), (2565) 6557
10 (1), (10247) 13118
11 (1), (14342, 16388, 14344), (14341), (14340) 27968
12 (1), (28678), (28677) 62933

Table 2: Cycles reached when iterating Se, 32
, and the value of n∗ for different values of e.

Therefore, there is a maximum n∗ such that n∗ < Se, p
q
(n∗).

To calculate the precise value of n∗, we use a computer to find an N for which (1) is
satisfied. Then we evaluate Se, p

q
(n) for all n ≤ N and record which one is the largest

satisfying that n ≤ Se, p
q
(n).

�

Proof of Theorem 1. To simplify notation, let S(n) = Se, p
q
(n) for all positive integers n. Let

n∗ be as in Lemma 1. Now, for each m ≤ n∗, compute m,S(m), S(S(m)), . . . until it cycles.
The process terminates because S(n) < n for all n > n∗. Therefore, for n > n∗, there exists a
positive integer k such that Sk(n) ≤ n∗. This implies that the cycle n reaches is one that was
already computed. Therefore, we need only find the cycles reached for m ≤ n∗. The outcome
of performing these calculations for different values of e and p/q = 3/2 is recorded in Table 2.
The outcome of performing these calculations on e ∈ {2, 3, 4} with p/q ∈ {5/2, 5/3, 5/4, 7/2}
is recorded in Table 3.

�

4 Arbitrary Heights in fractional base number systems

The key to our proof of Theorem 2 is showing that for each sufficiently large k, there exists a
positive integer n such that Se, p

q
(n) = k. The following lemma handles the case when q = 2.

Lemma 2. Let e ≥ 1 and p > 2 be an odd positive integer. For every integer k ≥ 2e, there
exists an even integer n, such that Se, p

2
(n) = k.

Proof. We will prove the lemma by induction on k. To show that it is true for k = 2e,
consider the number 2. 2 is 2 p

2
, therefore Se, p

2
(2) = 2e. Now let k ≥ 2e and assume that

there exists an even m such that Se, p
2
(m) = k. Let m = 2bc where b ≥ 1 and c is odd. Write

m in base p/2 as
m = arar−1 · · · a1a0.
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p/q e = 2 e = 3 e = 4

5 / 2
(16, 6, 5, 4),
(32, 24, 29);

n∗ = 39

(65), (163, 190, 73, 118, 64),
(81), (80), (66), (17);

n∗ = 239

(371, 276, 275, 274), (355, 130, 113),
(195, 353);

n∗ = 1039

5 / 3
(34, 50), (25),
(26), (59), (23),
(11), (10);

n∗ = 59

(100, 38, 64, 102, 46), (101, 39),
(127, 107, 73, 135), (162), (193),
(190, 166, 218), (199, 237);

n∗ = 284

(772, 804, 454, 788, 950, 658, 934,
1126, 1028, 1202, 868, 936, 390),
(1027, 1137, 1125),
(1122, 994), (1299), (101), (100);

n∗ = 1324

5 / 4
(66, 55), (50),
(58, 75, 49, 56, 67),
(74, 83), (51);

n∗ = 74

(311, 251, 247, 231, 371),
(361), (417), ( 374), (360), (314),
(424, 418, 436, 272, 328, 364);

n∗ = 464

(1786, 1880, 1403, 1594, 1659, 2011,
2075, 1579, 2057, 1947, 1688, 1229,
1641, 1676, 1946, 1673, 1851, 1592,
1419, 1974, 2058, 2012, 2090);

n∗ = 2639

7 / 2 (25, 52), (97);

n∗ = 97

(341, 591, 376, 143, 187, 216,
352, 25, 280, 244, 469, 63,
128, 44, 141, 161, 197, 73, 307,
467, 377, 234, 182, 91),
(35), (288, 343, 9, 16, 72),
(36), (189), (190), (468);

n∗ = 615

(914, 2065, 1953, 1538, 2819, 2690, 2210,
1507, 1491, 2610, 1856, 1348, 1666, 259,
1808, 2659, 3136, 1824),
(1634, 1731, 994), (371, 34, 1313),
(130, 354, 289, 1938, 3265, 2930, 1474, 1570),
(451, 195, 2177, 1554, 179, 513, 2034, 2530);

n∗ = 5417

Table 3: Cycles reached when iterating Se, pq
, and the value of n∗ for different values of e and p/q.

Then (p
2

)b
m+ 1 = arar−1 · · · a1a0 0 · · · 0︸ ︷︷ ︸

b−1

1,

where there are b− 1 zero digits. Since m = 2bc, (p/2)bm+ 1 is even. Furthermore, since it
has the same digits as before with b− 1 zeroes added and one 1 added, the sum of the e-th
powers of the digits is k + 1.

�

The following lemma handles the e = 1 case.

Lemma 3. Let p/q > 1 be written in lowest terms. For every integer k ≥ q, there exists n,
such that S1, p

q
(n) = k.

Proof. We prove by induction on t that for each k ∈ {q, q+1, . . . , qt}, there exists an mk such
that S1, p

q
(mk) = k. The fact that S1, p

q
(q) = q proves the case of t = 1. Now, fix t ≥ 1 and

assume that for each k ∈ {q, q+1, . . . , qt}, there exists an mk such that S1, p
q
(mk) = k. Write

mqt as mqt = qαb for some α ≥ 1 and b relatively prime to q. Suppose mqt = arar−1 · · · a0 p
q
.
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Then

` =

(
p

q

)α
mqt = ar · · · a0 0 · · · 0︸ ︷︷ ︸

α

.

We know ` 6≡ 0 mod q. Let w be the smallest positive integer such that ` + w ≡ 0 mod q.
Then 1 ≤ w ≤ q − 1 < p− 1. But then

`+ w = ar · · · a0 0 · · · 0︸ ︷︷ ︸
α−1

w,

because w < p − 1. This implies that the digital sum base p/q of the numbers ` + 1, ` +
2, . . . , ` + w are qt + 1, qt + 2, . . . , qt + w, respectively. Now ` + w is a multiple of q with
S1, p

q
(`+w) = qt+w ≥ qt+ 1, and we have that for all q ≤ k ≤ qt+w, there exists mk such

that S1, p
q
(mk) = k. Since q|(` + w) and ` + w ≥ qt + 1, then ` + w ≥ q(t + 1). Therefore,

we’ve proved that for every q ≤ k ≤ q(t+ 1), there is an mk such that S1, p
q
(mk) = k.

�

Using these two Lemmas, we can now present the proof of Theorem 2.

Proof of Theorem 2. We will prove it by induction. Let n∗ be as defined in Lemma 1. Since
the cycles that are reached by iterations of Se, p

q
are finite and there are finitely many of

them, there is a largest integer K with height 0. Let n be an integer greater than M =
max{n∗, 2e, q,K}. Since n > K, n has some height h > 0. Then, Se, p

q
(n) has height h − 1,

S2
e, p

q
(n) has height h − 2, . . . , Sh−1

e, p
q

(n) has height 1. Therefore, for every positive integer

i ≤ h, there exists an integer n of height i.
Let H ≥ h. Suppose that there is an integer n > K with height H. Since n > 2e, by

Lemma 2, if q = 2, then there exists t such that Se, p
2
(t) = n. Since n > q, by Lemma

3, if e = 1, then there exists t such that S1, p
q
(t) = n. Therefore, in either case (q = 2 or

e = 1), there exists an integer t such that Se, p
q
(t) = n. But t > n∗, which implies that

n = Se, p
q
(t) < t. Therefore t > n > K and t has height H + 1.

�
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