On sets whose subsets have integer mean

Enrique Treviño

ISMAA 2021
March 12, 2021

Motivating Problem

Consider the following problem that appeared as problem 2 in the 31st Mexican Mathematical Olympiad held in November 2017:

A set with n distinct positive integers is said to be balanced if the mean of any k numbers in the set is an integer, for any $1 \leq k \leq n$. Find the largest possible sum of the elements of a balanced set with all numbers in the set less than or equal to 2017.

Sketch of solution

- Consider a balanced set with n elements. Say $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
- Let $k \leq n-1$. Note that by fixing any $k-1$ terms, the k-th term has to be of the same congruence modulo k for any other number. Therefore, they are all congruent modulo k.
- Since $a_{i} \equiv a_{j} \bmod k$ for all pairs i, j and all $k \leq n-1$, then all the numbers are congruent modulo $M=1 \mathrm{~cm}\{1,2, \ldots, n-1\}$.
- Note that if $n \geq 8$, then a balanced set consists of elements congruent to $\operatorname{lcm}\{1,2, \ldots, 7\}=420$. Since we can't have 8 positive integers ≤ 2017 congruent to each other modulo 420, then we need to consider balanced sets with at most 7 elements.
- $S=\{2017,2017-60, \ldots, 2017-6 \cdot 60\}$ is the balanced set with 7 elements of maximal sum (12859). If you have 6 elements or less the sum is at most $6 \cdot 2017<12859$.

Slight variant

Consider the same problem but with numbers ≤ 3000 instead of ≤ 2017. What happens?

- Since $420 \cdot 7 \leq 3000$, we can fit an 8-element balanced set, namely $\{3000,3000-420, \ldots, 3000-7 \cdot 3000\}$. The sum of the elements of this set is 12240 .
- The 7-element balanced set $\{3000,3000-60, \ldots, 3000-6 \cdot 60\}$ has sum 19740.
- The 7-element balanced set has a higher sum than the 8-element balanced set!

Generalization

- For a positive integer N, let $M(N)$ be the size of the largest balanced set all of whose elements are $\leq N$.
- Let $S(N)$ be the size of the set with maximal sum among balanced sets all of whose elements are $\leq N$.

For what N is $M(N)=S(N)$?

For example $M(2017)=S(2017)$, yet $M(3000) \neq S(3000)$.

Numerics

Using a computer, we can verify that if $N \leq 1000000$, then $M(N)=S(N)$ for

$$
\begin{aligned}
1 & \leq N \leq 18 \\
31 & \leq N \leq 48 \\
85 & \leq N \leq 300 \\
571 & \leq N \leq 2940 \\
18481 & \leq N \leq 22680 \\
54181 & \leq N \leq 304920
\end{aligned}
$$

Pattern

Consider 18, 48, 300, 2940, 22680, 304920. Let

$$
L(n)=\operatorname{lcm}\{1,2, \ldots, n\}
$$

Then

$$
\begin{aligned}
18 & =3 L(3) \\
48 & =4 L(4) \\
300 & =5 L(5) \\
2940 & =7 L(7) \\
22680 & =9 L(9) \\
304920 & =11 L(11)
\end{aligned}
$$

Theorems about $m L(m)$

Theorem

Let p be prime. Them $M(p L(p))=S(p L(p))$. Furthermore, $M(p L(p)+1) \neq S(p L(p)+1)$.

Theorem

If m is not a prime power, then $M(m L(m)) \neq S(m L(m))$.

Ingredients of the proofs

- To prove $M(p L(p))=S(p L(p))$ and $M(p L(p)+1) \neq S(p L(p)+1)$ the key is that $L(p)=p L(p-1)$.
- To prove that $M(m L(m)) \neq S(m L(m))$ for m not a prime power. The key is that a balanced set with p elements where p is a prime close to m will have a higher sum than a balanced set with more elements as long as p is close enough to m.
- For non-prime powers close enough is at least larger than $m / 2$. This happens due to Bertrand's postulate.

Towards stronger statements

Bertrand's postulate is not the best analytic number theory can do in terms of primes close to m. Here's a recent theorem of Dudek (2016):

Theorem

For $m \geq e^{e^{33.3}}$, there exists a prime p such that $m^{3} \leq p<m^{3}+3 m^{2}$. In particular, there is a prime p such that

$$
m^{3}<p<(m+1)^{3}
$$

We can prove a slight variant:

Lemma

For all $m \geq 10^{10^{15}}$ there is a prime p such that

$$
m^{3}-\frac{1}{3} m^{2}<p<m^{3}
$$

Stronger statements

Theorem

For $m \geq 10^{10^{15}}$ of the form q^{k} for a prime q and an exponent $k \geq 3$, then $M(m L(m)) \neq S(m L(m))$.

Using results from Carneiro, Milinovich, and Soundararajan (2019) on large prime gaps assuming the Generalized Riemann Hypothesis (GRH), we can prove

Theorem

Assuming GRH, if $m=q^{k}$ for a prime q and exponent $k \geq 3$, then $M(m L(m)) \neq S(m L(m))$.

Conjecture

Conjecture

$$
S(m L(m))=M(m L(m))
$$

if and only if m is prime or $m \in\{4,9,121\}$.
The evidence for the conjecture:

- If m is prime, $S(m L(m))=M(m L(m))$
- If m is not a prime power, $S(m L(m)) \neq M(m L(m))$.
- If m is a large enough prime power with exponent at least 3 , $S(m L(m)) \neq M(m L(m))$. (Using GRH, we can remove "large enough")
- The evidence that no other prime squares work is that we've checked up to 1000 and Cramer's heuristics imply it for large enough p^{2}.

Numerics

Using a computer, we can verify that if $N \leq 1000000$, then $M(N)=S(N)$ for

$$
\begin{aligned}
1 & \leq N \leq 18 \\
31 & \leq N \leq 48 \\
85 & \leq N \leq 300 \\
571 & \leq N \leq 2940 \\
18481 & \leq N \leq 22680 \\
54181 & \leq N \leq 304920
\end{aligned}
$$

Density Question

- Let A be the set of all N for which $S(N)=M(N)$.
- Let $A(x)$ be the set of all $N \leq x$ for which $S(N)=M(N)$.

Does $\lim _{x \rightarrow \infty} \frac{A(x)}{x}$ exist?

Upper and lower density definitions

The upper density of a set of natural numbers A is

$$
\delta^{+}=\limsup _{x \rightarrow \infty} \frac{A(x)}{x} .
$$

The lower density is

$$
\delta^{-}=\liminf _{x \rightarrow \infty} \frac{A(x)}{x} .
$$

Our theorems on upper and lower density

Theorem

$$
\begin{aligned}
\delta^{+} & =1 . \\
\delta^{-} & =0 .
\end{aligned}
$$

Therefore $\lim _{x \rightarrow \infty} \frac{A(x)}{x}$ does not exist.

What was needed for these proofs?

- For δ^{+}the idea is as follows. Fix an integer k. If $p>q$ are consecutive primes with no prime powers in between and $p-q \geq k$. Then there is a large interval that contains elements of $A(p L(p))$. In fact this interval is of size at least $\left(1-\frac{1}{2 k}\right) A(p L(p))$ for large enough p. Therefore

$$
\delta^{+} \geq 1-\frac{1}{2 k}
$$

- By the Prime Number Theorem, the average distance between two primes grows logarithmically, so for any fixed integer k, there are infinitely many primes q satisfying that the next prime p is at least k numbers away. Therefore, we can let $k \rightarrow \infty$ to conclude $\delta^{+}=1$.

What was needed for these proofs? II

- For δ^{-}the idea is as follows. If $p>q$ are consecutive primes with no prime powers in between and $p-q \leq k$. Then there is a large interval that contains elements not in $A(p L(p) /(2 k))$. In fact this interval is essentially the size of $A(p L(p) /(2 k))$ for large enough p.
- By recent achievements in primes in small gaps by Zhang, Maynard, Tao, and the Polymath group, we know there are infinitely many primes $p>q$ with $p-q \leq 246$. Therefore we can take $k=246$ and confirm that $\delta^{-}=0$.

Thank you

Thank you

