The Smoothed Pólya-Vinogradov Inequality

Enrique Treviño

Swarthmore College

Integers Conference

October 28, 2011

Pólya-Vinogradov

Let χ be a Dirichlet character to the modulus $q>1$. Let

$$
S(\chi)=\max _{M, N}\left|\sum_{n=M+1}^{M+N} \chi(n)\right|
$$

The Pólya-Vinogradov inequality (1918) states that there exists an absolute universal constant c such that for any Dirichlet character $S(\chi) \leq c \sqrt{q} \log q$.
Under GRH, Montgomery and Vaughan showed that $S(\chi) \ll \sqrt{q} \log \log q$.

Paley showed in 1932 that there are infinitely many quadratic characters such that $S(\chi) \gg \sqrt{q} \log \log q$.

Further results regarding Pólya-Vinogradov

Granville and Soundararajan showed that one can save a small power of $\log q$ in the Pólya-Vinogradov inequality. Goldmakher improved it to

Theorem (Goldmakher, 2007)

For each fixed odd number $g>1$, for $\chi(\bmod q)$ of order g,

$$
S(\chi) \ll g \sqrt{q}(\log q)^{\Delta_{g}+o(1)}, \quad \Delta_{g}=\frac{g}{\pi} \sin \frac{\pi}{g}, \quad q \rightarrow \infty .
$$

Moreover, under GRH

$$
S(\chi) \ll g \sqrt{q}(\log \log q)^{\Delta_{g}+o(1)} .
$$

Furthermore, there exists an infinite family of characters $\chi(\bmod q)$ of order g satisfying

$$
S(\chi) \ggg \epsilon, g \sqrt{q}(\log \log q)^{\Delta_{g}-\epsilon} .
$$

Explicit Pólya-Vinogradov

Theorem (Hildebrand, 1988)

For χ a primitive character to the modulus $q>1$, we have

$$
|S(\chi)| \leq \begin{cases}\left(\frac{2}{3 \pi^{2}}+o(1)\right) \sqrt{q} \log q & , \quad \chi \text { even } \\ \left(\frac{1}{3 \pi}+o(1)\right) \sqrt{q} \log q & , \quad \chi \text { odd }\end{cases}
$$

Theorem (Pomerance, 2009)

For χ a primitive character to the modulus $q>1$, we have

$$
|S(\chi)| \leq \begin{cases}\frac{2}{\pi^{2}} \sqrt{q} \log q+\frac{4}{\pi^{2}} \sqrt{q} \log \log q+\frac{3}{2} \sqrt{q} & , \quad \chi \text { even. } \\ \frac{1}{2 \pi} \sqrt{q} \log q+\frac{1}{\pi} \sqrt{q} \log \log q+\sqrt{q} & , \quad \chi \text { odd } .\end{cases}
$$

Smoothed Pólya-Vinogradov

Let M, N be real numbers with $0<N \leq q$, then define $S^{*}(\chi)$ as follows:

$$
S^{*}(\chi)=\max _{M, N}\left|\sum_{M \leq n \leq M+2 N} \chi(n)\left(1-\left|\frac{n-M}{N}-1\right|\right)\right| .
$$

Theorem (Levin, Pomerance, Soundararajan, 2009)

Let χ be a primitive character to the modulus $q>1$, and let M, N be real numbers with $0<N \leq q$, then

$$
S^{*}(\chi) \leq \sqrt{q}-\frac{N}{\sqrt{q}} .
$$

Some Applications of the Smoothed Pólya-Vinogradov

- To prove a conjecture of Brizolis (Levin, Pomerance, Soundararajan) that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x(\bmod p)$.
- Pólya-Vinogradov was used to prove a conjecture of Mollin (Granville, Mollin and Williams) that the least inert prime p in a real quadratic field of discriminant D is $\leq \sqrt{D} / 2$. We used the Smoothed Pólya-Vinogradov to improve this to $p \leq D^{0.45}$.

Proof of the Smoothed PV

- Let $H(t)=\max \{0,1-|t|\}$.
- $S^{*}(\chi)=\frac{1}{\tau(\bar{\chi})} \sum_{j=1}^{q} \bar{\chi}(j) \sum_{n \in \mathbb{Z}} e(n j / q) H\left(\frac{n-M}{N}-1\right)$
- The Fourier transform of H, \widehat{H}, is nonnegative and $\widehat{H}(0)=1$.
- Using Poisson summation, the fact that $\chi(n)$ and $e(n)$ have absolute value 1 and that $|\tau(\bar{\chi})|=\sqrt{q}$ for primitive characters χ yields

Proof of the Smoothed PV

- Let $H(t)=\max \{0,1-|t|\}$.
- $S^{*}(\chi)=\frac{1}{\tau(\bar{\chi})} \sum_{j=1}^{q} \bar{\chi}(j) \sum_{n \in \mathbb{Z}} e(n j / q) H\left(\frac{n-M}{N}-1\right)$.
- The Fourier transform of H, \widehat{H}, is nonnegative and $\widehat{H}(0)=1$.
- Using Poisson summation, the fact that $\chi(n)$ and $e(n)$ have absolute value 1 and that $|\tau(\bar{\chi})|=\sqrt{q}$ for primitive characters χ yields

Proof of the Smoothed PV

- Let $H(t)=\max \{0,1-|t|\}$.
- $S^{*}(\chi)=\frac{1}{\tau(\bar{\chi})} \sum_{j=1}^{q} \bar{\chi}(j) \sum_{n \in \mathbb{Z}} e(n j / q) H\left(\frac{n-M}{N}-1\right)$.
- The Fourier transform of H, \hat{H}, is nonnegative and $\widehat{H}(0)=1$.
- Using Poisson summation, the fact that $\chi(n)$ and $e(n)$ have absolute value 1 and that $|\tau(\bar{\chi})|=\sqrt{q}$ for primitive characters χ yields

Proof of the Smoothed PV

- Let $H(t)=\max \{0,1-|t|\}$.
- $S^{*}(\chi)=\frac{1}{\tau(\bar{\chi})} \sum_{j=1}^{q} \bar{\chi}(j) \sum_{n \in \mathbb{Z}} e(n j / q) H\left(\frac{n-M}{N}-1\right)$.
- The Fourier transform of H, \hat{H}, is nonnegative and $\widehat{H}(0)=1$.
- Using Poisson summation, the fact that $\chi(n)$ and $e(n)$ have absolute value 1 and that $|\tau(\bar{\chi})|=\sqrt{q}$ for primitive characters χ yields

$$
\left|S^{*}(\chi)\right| \leq \frac{N}{\sqrt{q}} \sum_{\substack{k \in \mathbb{Z} \\(k, q)=1}} \widehat{H}\left(\frac{k N}{q}\right) .
$$

Proof

$$
\begin{aligned}
\left|S^{*}(\chi)\right| & \leq \frac{N}{\sqrt{q}} \sum_{\substack{k \in \mathbb{Z} \\
(k, q)=1}} \widehat{H}\left(\frac{k N}{q}\right) \\
& \leq \sqrt{q}\left(\sum_{k \in \mathbb{Z}} \frac{N}{q} \widehat{H}\left(\frac{k N}{q}\right)-\frac{N}{q} \sum_{k \in \mathbb{Z}} \widehat{H}(k N)\right) \\
& =\sqrt{q}\left(\sum_{t \in \mathbb{Z}} H\left(\frac{q t}{N}\right)-\frac{N}{q} \widehat{H}(0)\right) \\
& =\sqrt{q}-\frac{N}{\sqrt{q}}
\end{aligned}
$$

Corollaries

Corollary

Let χ be a primitive character to the modulus $q>1$, let M, N be real numbers with $0<N \leq q$ and let m be a divisor of q such that $1 \leq m \leq \frac{q}{N}$. Then

$$
\left|S^{*}(\chi)\right| \leq \frac{\phi(m)}{m} \sqrt{q}
$$

Corollary

Let χ be a primitive character to the modulus $q>1$, , then

$$
\left|S^{*}(\chi)\right| \leq \frac{\phi(q)}{q} \sqrt{q}+2^{\omega(q)-1} \frac{N}{\sqrt{q}}
$$

Quick Application

- Let D be a fundamental discriminant. Consider $\chi(n)=\left(\frac{D}{n}\right)$, where $\left(\frac{D}{n}\right)$ is the Kronecker symbol. Then χ is a primitive Dirichlet character.
- Assume the least prime p such that $\chi(p)=-1$ is greater than y for some y. Then

Quick Application

- Let D be a fundamental discriminant. Consider $\chi(n)=\left(\frac{D}{n}\right)$, where $\left(\frac{D}{n}\right)$ is the Kronecker symbol. Then χ is a primitive Dirichlet character.
- Assume the least prime p such that $\chi(p)=-1$ is greater than y for some y. Then

$$
\begin{aligned}
& S_{\chi}(N)=\sum_{n \leq 2 N} \chi(n)\left(1-\left|\frac{n}{N}-1\right|\right) \\
& \geq \sum_{\substack{n \leq 2 N \\
(n, D)=1}}\left(1-\left|\frac{n}{N}-1\right|\right)-2 \sum_{\substack{y<p \leq 2 N \\
\chi(p)=-1}} \sum_{\substack{n \leq \frac{2 N}{p} \\
(n, D)=1}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
\end{aligned}
$$

Imprimitive Case

Corollary (Levin, Pomerance, Soundararajan)

Let χ be a primitive character to the modulus $q>1$, then

$$
\begin{equation*}
\left|S^{*}(\chi)\right| \leq \frac{q^{3 / 2}}{N}\left\{\frac{N}{q}\right\}\left(1-\left\{\frac{N}{q}\right\}\right) . \tag{1}
\end{equation*}
$$

In particular, $\left|S^{*}(\chi)\right|<\sqrt{q}$.

Theorem

Let χ be a non-principal Dirichlet character to the modulus $q>1$, then

$$
\left|S^{*}(\chi)\right|<\frac{4}{\sqrt{6}} \sqrt{q}
$$

Lowerbound for the smoothed Pólya-Vinogradov

Theorem (ET)

Let χ be a primitive character to the modulus $q>1$, then

$$
S^{*}(\chi) \geq \frac{2}{\pi^{2}} \sqrt{q}
$$

Therefore, the order of magnitude of $S^{*}(\chi)$ is \sqrt{q}.

More Work

Let $q>1$ be an integer and let χ be a primitive Dirichlet character mod q. Let

$$
S_{\chi}(M, N)=\sum_{M \leq n \leq 2 N} \chi(n)\left(1-\left|\frac{n-M}{N}-1\right|\right)
$$

We're interested in

$$
A(q)=\min _{\chi} \max _{M, N}\left|S_{\chi}(M, N)\right|
$$

and

$$
B(q)=\max _{\chi} \max _{M, N}\left|S_{\chi}(M, N)\right|
$$

- From earlier theorems we know

$$
A(q)>\frac{2}{\pi^{2}}
$$

and

$$
B(q)<1 .
$$

- Kamil Adamczewski wrote code to find $A(q)$ and $B(q)$ for small q ($q \leq 200$).
- $A(a)$ is around 0.45 in all modulus that have been computed. In those examples, $B(q)$ is between 0.7 and 0.8 .
- From earlier theorems we know

$$
A(q)>\frac{2}{\pi^{2}}
$$

and

$$
B(q)<1 .
$$

- Kamil Adamczewski wrote code to find $A(q)$ and $B(q)$ for small q ($q \leq 200$).
- $A(q)$ is around 0.45 in all modulus that have been computed. In those examples, $B(q)$ is between 0.7 and 0.8 .
- From earlier theorems we know

$$
A(q)>\frac{2}{\pi^{2}}
$$

and

$$
B(q)<1 .
$$

- Kamil Adamczewski wrote code to find $A(q)$ and $B(q)$ for small q ($q \leq 200$).
- $A(q)$ is around 0.45 in all modulus that have been computed. In those examples, $B(q)$ is between 0.7 and 0.8.

Thank you!

