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Pélya-Vinogradov
Pdélya—Vinogradov

Let x be a Dirichlet character to the modulus q > 1. Let

M+N

> x(n)

n=M-+1

S(x) = max

)

The Po6lya—Vinogradov inequality (1918) states that there exists
an absolute universal constant c¢ such that for any Dirichlet
character S(x) < ¢\/qlogg.

Under GRH, Montgomery and Vaughan showed that

S(x) < /qloglogq.

Paley showed in 1932 that there are infinitely many quadratic
characters such that S(x) > /gloglog q.
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Pélya-Vinogradov

Further results regarding Polya—Vinogradov

Granville and Soundararajan showed that one can save a small
power of log g in the Pélya—Vinogradov inequality. Goldmakher
improved it to

Theorem (Goldmakher, 2007)

For each fixed odd number g > 1, for x (mod q) of order g,

S(x) <g vA(log g)AsteM Ay = %sin g, q — oco.

Moreover, under GRH
S(x) <g v/q(loglog g)2a o),

Furthermore, there exists an infinite family of characters x (mod q) of order g
satisfying

S(x) >e,g Vq(loglog q)29 <.
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Pélya-Vinogradov

Explicit Polya—Vinogradov

Theorem (Hildebrand, 1988)
For x a primitive character to the modulus q > 1, we have

1SCAI <

Theorem (Pomerance, 2009)
For x a primitive character to the modulus g > 1, we have

2 4 3

ﬁ\/alogq+ ﬁ\ﬁz/loglogqqL E\/Ey , X even,
1S(x)| <

1 1

g\/c’yloqur ;\/c’yloglogqnt\/c’y , xodd.
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Smoothed Pélya—Vinogradov

Smoothed Pdlya—Vinogradov

Let M, N be real numbers with 0 < N < q, then define S*(x) as

follows:
n—M
s 1>|.

S*(x) = max

)

> x(n) <1 -

M<n<M+2N

Theorem (Levin, Pomerance, Soundararajan, 2009)

Let x be a primitive character to the modulus q > 1, and let
M. N be real numbers with0 < N < q, then

500 < Va- o

NG

Enrique Trevifio The Smoothed Pdlya—Vinogradov Inequality



Smoothed Pélya—Vinogradov

Some Applications of the Smoothed
Pélya—Vinogradov

@ To prove a conjecture of Brizolis (Levin, Pomerance,
Soundararajan) that for every prime p > 3 there is a
primitive root g and an integer x € [1, p — 1] with
log, x = x, that is, g* = x (mod p).

@ Pdlya—Vinogradov was used to prove a conjecture of Mollin
(Granville, Mollin and Williams) that the least inert prime p
in a real quadratic field of discriminant D is < v'D/2. We
used the Smoothed Pélya—Vinogradov to improve this to
p < D045
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Proof of the Smoothed PV

@ Let H(t) = max{0,1 — |t|}.
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Proof of the Smoothed PV

@ Let H(t) = max{O 1— |t}
M

@ S*(x) = XE_: N> e(nj/q)H <r’7\1—1>.

nezZ
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Proof of the Smoothed PV

@ Let H(t) = max{O 1— |t}
e(nj/q)H <n_NM—1>-

° Ihe Fourier transform of H, H, is nonnegative and
H(0) =1.

OS* —

neZ
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Proof of the Smoothed PV

@ Let H(t) = max{O 1— |t}
M

HEZ e(nj/q)H <n7\, - 1> :

° Ihe Fourier transform of H, H, is nonnegative and
H(0) = 1.

@ Using Poisson summation, the fact that x(n) and e(n) have
absolute value 1 and that |7(x)| = 1/q for primitive
characters y yields

IS*(X)SNq 3 H("C’;’)

kez
(k,q)=1

OS* —
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Smoothed Pélya—Vinogradov
Proof

N ~ (kN
15° () < 1L H()
) va q
(k,q)=1
N~ (kN N ~
< —H(— ) - — H(kN
<va( s 5a () -y o)

3

/\(\
m
N

I
3
|
4=l
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Smoothed Pélya—Vinogradov

Corollaries

Corollary

Let x be a primitive character to the modulus g > 1, let M, N be real numbers
with0 < N < q and let m be a divisor of q such that1 < m < {. Then

500l < 47 g

Corollary

Let x be a primitive character to the modulus g > 1, , then
a-1_N

. #(q) o
1S*(x)| < G Vq+2 /g

N
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Smoothed Pélya—Vinogradov
Quick Application

@ Let D be a fundamental discriminant. Consider
x(n) = (£), where (2) is the Kronecker symbol. Then y is
a primitive Dirichlet character.
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Smoothed Pélya—Vinogradov
Quick Application

@ Let D be a fundamental discriminant. Consider
x(n) = (£), where (2) is the Kronecker symbol. Then y is

a primitive Dirichlet character.

@ Assume the least prime p such that x(p) = —1 is greater
than y for some y. Then

9= S0 (1[5 1)
(- s s o

y<p<2N n<2N
X(p)* 1 (n D)

DV\
N 2

Enrique Trevifio The Smoothed Pdlya—Vinogradov Inequality



Smoothed Pélya—Vinogradov

Imprimitive Case

Corollary (Levin, Pomerance, Soundararajan)

Let x be a primitive character to the modulus q > 1, then

cos B0 o

In particular, |S*(x)| < 1/q.

Theorem

Let x be a non-principal Dirichlet character to the modulus q > 1,
then

2 7

1S*(0)I < 78
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Smoothed Pélya—Vinogradov

Lowerbound for the smoothed Pdlya—Vinogradov

Let x be a primitive character to the modulus q > 1, then

5§00 > 5@

Therefore, the order of magnitude of S*(x) is /q.
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Smoothed Pélya—Vinogradov
More Work

Let g > 1 be an integer and let x be a primitive Dirichlet
character mod q. Let
),
N

SMN)= 3 x(n) (1 -

M<n<2N

We're interested in
A(Q) = mi M, N
Q) mxmrpmlsx( NI,

and
B(q) = max max [Sx(M, NI
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Smoothed Pélya—Vinogradov

@ From earlier theorems we know

and
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Smoothed Pélya—Vinogradov

@ From earlier theorems we know

and
B(q) < 1.

@ Kamil Adamczewski wrote code to find A(q) and B(q) for
small g (g < 200).
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Smoothed Pélya—Vinogradov

@ From earlier theorems we know

and
B(q) < 1.

@ Kamil Adamczewski wrote code to find A(q) and B(q) for
small q (g < 200).
@ A(q) is around 0.45 in all modulus that have been

computed. In those examples, B(q) is between 0.7 and
0.8.
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Smoothed Pélya—Vinogradov

Thank you!

nogradov Inequality
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